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The construction of a universal error-corrected quantum com-
puter would enable an exponential advantage over the best 
classical computer in a variety of computational tasks1,2. While 

significant progress has been made in reducing errors on physical 
qubits beyond the required fault tolerance levels3,4, scaling these 
systems up to a level required for large-scale computing is a major 
outstanding challenge5. Given this difficulty, there has emerged a 
significant effort towards algorithms for noisy intermediate-scale 
quantum processors, which can solve problems without the need for 
full-scale error correction6,7. Not only would such a machine reveal a 
fundamental gap between the computational power of the quantum 
and classical worlds8, it could also potentially advance combinato-
rial optimization9, quantum simulation10 and neural networks11–15.

Hardware-specific quantum algorithms have been developed 
to demonstrate a quantum advantage16,17. Moreover, the system 
requirements (such as noise or qubit number) to show an unambig-
uous advantage have been analysed18,19. Generally, quantum advan-
tage algorithms for noisy intermediate-scale quantum processors 
follow a similar structure: showing that under reasonable complex-
ity-theoretic conjectures, efficient classical sampling from a distri-
bution ψ≡ ∣⟨ ∣ ⟩ ∣p x x( )U out

2 is intractable. Here ψ ψ∣ ⟩ = ∣ ⟩Ûout in  is a 
quantum state generated by a quantum circuit Û acting on an input 
state |ψin〉, and {|x〉}, for example, is the set of bit strings in the com-
putational basis. As experiments reach the regime where they can 
no longer be classically simulated20–22, the question of verification 
becomes paramount. Unlike problems such as factoring that are in 
the nondeterministic polynomial-time (NP) complexity class and 
therefore can be efficiently verified23, sampling problems typically 
exist outside this class and efficient verification may not be pos-
sible24. Machine-level verification techniques have been developed 

using information about the physical system to achieve efficient 
verification25, but a hardware-independent approach to verification 
is outstanding.

Rather than determine properties of an output state given 
knowledge of the circuit, we ask: given direct access to the state 
|ψout〉, can we efficiently learn the physical/computational opera-
tion Û, or approximate Û such that can we generate |ψout〉? Here we 
develop the variational quantum unsampling (VQU) protocol that 
performs optimization on |ψout〉 using a controllable auxiliary quan-
tum circuit ϕV̂ ( ), which is a functional of control parameters ϕ (see 
Fig. 1). Inspired by neural network approaches to machine learning, 
our approach approximates the effect of an unknown time-reversed 
quantum operation ϕ̂ ≈ †V Û( )  to learn the quantum circuit that 
recovers a known input state such that ψ ψϕ̂ ∣ ⟩ ≈ ∣ ⟩V ( ) out in . In gen-
eral, our variational learning procedure amounts to partial charac-
terization of unknown unitary operations given knowledge of their 
actions over certain input states. Consequently, our approach can 
be understood as a variational approach to partial quantum process 
tomography26.

Partial tomography of general quantum states requires a num-
ber of measurements that scales with the dimensionality of the 
system27. However, in the special case where quantum states are 
well described by an efficient representation such as matrix prod-
uct states, efficient tomography schemes have been proposed28. In 
contrast, variational approaches may be able to adaptively learn the 
underlying structure of the quantum channel to perform efficient 
partial tomography in special cases29. While variational quantum 
algorithms have been developed for computational tasks such as 
classification12,13,30 and simulation10,31, we instead focus on the veri-
fication of circuit outputs.
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Variational learning
Formally, the unsampling problem asks: given direct access to a 
polynomial number of copies of |ψout〉, find a circuit that returns 
the known input state |ψin〉, thus determining some elements of Û. 
Prima facie, one can imagine taking |ψout〉 and coherently passing it 
through an appropriately parametrized circuit ϕV̂ ( ) (see Fig. 1a). 
In the language of machine learning, we can define a loss function

ψ ψϕ ϕ= − ∣⟨ ∣ ̂ ∣ ⟩ ∣L V( ) 1 ( ) (1)in out
2

that quantifies the distance between the output state and the input 
state, and is bounded ϕ ∈L( ) [0, 1]. Searching for the condition that

ϕ =
ϕ

Lmin ( ) 0 (2)

leads to ϕ̂ ≈ †V Û( )  over a given input state. That is, the circuit 
that generates |ψin〉 is found, corresponding to a single column 
of Û. Note, however, that without a well-chosen ansatz, we could 
have ψ ψϕ∣ ⟨ ∣ ̂ ∣ ⟩ ∣ ≈ ∕V D( ) 1in out

2 , where D is the dimension of the 
system, which typically scales exponentially in the particle number. 
The probability for an individual event is therefore exponentially 
unlikely and estimating the associated probability takes exponen-
tial time. Moreover, it has recently been shown that gradient-based 
quantum circuit learning becomes exponentially inefficient due to 
a very flat loss landscape if one starts with a generic random initial 
state over the entire Hilbert space32; however, initialization strate-
gies have been proposed to overcome this obstacle33. Here we opt 
for a divide-and-conquer approach that selects efficiently accessible 

subspaces of the entire Hilbert space for the stochastic optimization, 
within a layer-wise model of learning.

Towards this end, we use multiple unitaries V̂k, or ‘layers’, and a 
layer-by-layer training approach, which at each stage optimizes over 
only a polynomially sized subset of the full Hilbert space (see Fig. 
1b). To illustrate this procedure, consider an n-qubit system with 
the known pure initialization state, with tensor product structure 
(such as a mean-field state), |ψin〉 = |α1, α2…αn〉, where |αi〉 is the 
state of the ith qubit. The first training stage feeds |ψout〉 into a circuit 

ϕV̂ ( )n n  acting on all n qubits. Letting ρ1 =  ψ ψϕ ϕ̂ ∣ ⟩ ⟨ ∣ ̂ †V V( ) ( )n n n nout out , 

the optimization then varies circuit parameters ϕn to minimize

α ρ αϕ = − ⟨ ∣ ∣ ⟩…L ( ) 1 tr ( ) (3)n n1 1 2 1 1

If ϕ =L ( ) 0n1 , then the first qubit is successfully found in the state 
|α1〉 and the remainder of the qubits ρ ρ=′ tr ( )1 1 1  are in a pure state. 
The state ρ ′1 is then fed into a circuit ϕ̂

− −V ( )n n1 1  acting on the 
remaining n − 1 qubits and ϕ −L ( )n2 1  is minimized to maximize the 
overlap between the second qubit and |α2〉. This process is repeated 
for n stages and if successful each subsequent stage will disentangle 
a qubit until the total output is |α1, α2…αn〉. Critically, the probabil-
ity estimated at each stage is now exponentially boosted, with ϕL ( )i  
scaling as O(1) (independently of n). While boosting the cost func-
tion does not guarantee an efficient gradient, layer-wise approaches 
can minimize the circuit depth, which may ameliorate vanish-
ing gradients. Moreover, the error in a single stage of unsampling 

ϵϕ ≈L( )  should scale as ϵ ≪ ∕n1 , such that as n becomes large the 
overall unsampling fidelity does not vanish.

Our protocol enables a twofold approach to verification. First, 

the solution unitary is given by ϕ̂ = ∏ ⊗ ̂
= −V Î V ( )i
n

n i i isol 1  (where Îj is 

the identity operation acting on the first j qubits), which enables 
direct verification of the sampling circuit. Repeating this process for 
multiple input basis states yields additional information about Û. 
Second, deviation from |ψin〉 signals decoherent error in the sam-
pling protocol, which can be further inspected by tomography on a 
reduced subset of qubits. A layer-wise training approach with con-
ditional feedforward was recently used for quantum state discrimi-
nation14 and recognizing quantum states of matter29.

We numerically tested this protocol for up to five qubits. These 
simulations, which are provided in Supplementary Section I, con-
verged to numerical precision in all instances. We conjecture that 
this efficacy is due to an over-parameterization effect: each layer 
effectively decouples a qubit from the remainder of the state, and 
there may be many such circuit settings ϕ that achieve this con-
dition, whereby ϕ =L ( ) 0i . For certain classes of classical deep 
neural networks, this over-parameterization has been shown to 
both increase expressiveness34 and accelerate training35. Similar 
layer-wise training approaches have found success in training par-
ticular classes of classical neural networks without the need for  
backpropagation36,37.

While the existence of a circuit ϕV̂ ( )i i  is guaranteed provided that 
ρi−1 is pure, the above example does not specify how one can physi-
cally build the circuit that implements the unitary, and in general 
constructing an arbitrary unitary requires a circuit depth that grows 
exponentially in the number of qubits38. Each VQU protocol can 
leverage unique structure in the specific sampling problem to con-
struct a reduced family of unitaries that can be efficiently imple-
mented. If the system parameterization (otherwise known as the 
ansatz) AU is known, then VQU can be use to characterize the sam-
pling circuit. However, if the system parameterization is unknown 
or not known to be optimal, VQU can be used to assess whether a 
test ansatz AV can represent the state, or set of states given by AU. 
We refer to this procedure as ‘ansatz validation’, which is related to 
quantum circuit compiling39,40.
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Fig. 1 | VQU. a, Given a state ∣ ⟩ ∣ ⟩ψ ψ= Ûout in , the task is to find the circuit 
that returns |ψin〉, thus determining some features of Û. The VQU protocol 
feeds this state into a controllable quantum circuit and optimizes the 
parameters ϕ to find the time-reversed condition that ̂ ∣ ⟩ ∣ ⟩ψ ψϕ ≈V Û( ) out

†
out  

over the known input state. b, Directly optimizing for this condition is 
inefficient in the qubit number; therefore, the layer-wise approach breaks 
the problem up such that at each stage only a polynomially sized subset of 
the entire Hilbert space is optimized for.

Nature Physics | VOL 16 | March 2020 | 322–327 | www.nature.com/naturephysics 323

http://www.nature.com/naturephysics


Articles NATuRe PhysIcs

Certain classes of state (for example, Haar random) may require 
an exponential number of circuit elements to exactly generate; how-
ever, this provides a unique opportunity: VQU may compile an 
approximate form of the state with respect to a given ansatz that, 
given the noise inherent in deep quantum circuits, may generate a 
more accurate representation of the target state than an ansatz that 
is theoretically able to generate the exact state in a noiseless environ-
ment. If the form of the ansatz is poorly compatible with the chosen 
state, it is possible that the optimization of certain layers could be 
ignorant of the form of the global optimization and lead to a local 
minimum. This is common when choosing an ansatz independent 
of the form of the target state and can potentially be mitigated if 
certain properties or symmetries of the target state are known a pri-
ori41, additional steps are added to the training15 or additional gates 
are adaptively added to the ansatz42. While it remains an open ques-
tion exactly which ansatz are amenable to VQU, in Supplementary 
Section II we give an example of one such ansatz that is related to the 
fractional quantum Hall effect.

Optical VQU
Boson sampling is a mathematical proof (based on conjectures) that 
shows that ensembles of indistinguishable photons, when acted on 
by linear optical circuits (arrays of beamsplitters and phase-shift-
ers), generate samples from a probability distribution that cannot 
be efficiently generated classically16. Formally, given an n-photon 
initialization state of one photon per mode |ψin〉 = |1112…1n〉 (where 
|ij〉 represents i photons in the jth optical mode), each amplitude of 
the output state ψ φ ψ∣ ⟩ = ∣ ⟩Û( )mout in  is given by the permanent of 
a unique n × n submatrix of the m-dimensional unitary Ûm (ref. 43), 
where φ Û( )m  represents the multi-photon unitary. The output distri-
bution ψ= ∣⟨ ∣ ⟩ ∣p x x( )U out

2 is therefore also related to permanents, a 
notoriously difficult function to calculate44, with {|x〉} = {|i1i2…im〉} 
being the set of collision-free computational basis states such that 
∑ =i nj j  with ij ≤ 1.

In optics, an arbitrary m-dimensional unitary operator Ûm across m 
optical modes can always be constructed out of m(m − 1)/2 reconfig-
urable beamsplitters and phase-shifters45. This theorem therefore pro-
vides an efficient circuit ansatz for the optical VQU protocol. Efficient 
characterization schemes exist to estimate Ûm using either classi-
cal states of light46 or small-scale quantum states47. However, these 
approaches do not capture the full multi-photon process φ Û( )m , which 
may involve non-trivial entanglement between photons or imperfec-
tions in the photonic input state. Coarse-grain multi-photon verifi-
cation techniques have also been developed that rule out efficiently 
simulable alternative distributions, rather than verify the quantum 
state directly25. Limiting our discussion to the regime of n photons in 
m = n2 optical modes, the optical VQU protocol first feeds |ψout〉 into 
a n2-dimensional circuit ϕV̂ ( )n1  and minimizes the loss function (3), 
which maximizes ∼P1

1
, the probability of one and only photon in the 

first mode. Note, in the optical case |ψ1〉 = |11〉 and the trace opera-
tion occurs over the optical mode basis. Critically, the probability of 
exactly one photon in the ith optical mode ∼Pi

1
 scales as O ∕n(1 ) and is 

therefore an efficiently accessible measurement (see Supplementary 
Section III-A for a proof of this). Given ϕ ≈L ( ) 0n1 , the second layer 

ϕ̂
−V ( )n2 1  is an n2 − 1 mode circuit acting on n − 1 photons that maxi-

mizes the probability of one photon in the second optical mode. The 
optical VQU protocol proceeds for a total of n layers until the initial-
ization state |1112…1n〉 is recovered. In Supplementary Section III-B 
we show that the full protocol requires O n( )3  parameters.

There are two primary noise sources in linear optical systems: 
coherent (for example, over/under-rotation in the MZIs) and 
incoherent (for example, photon loss and distinguishability). In 
Supplementary Section V, we show that VQU is inherently robust 
to coherent error, which can be understood from the well-bounded 
spectrum norm of linear optical Hamiltonians48. Distinguishability 
between photons may be mitigated through filtering, which due 
to post-selection in photonic experiments only reduces the overall 
efficiency and does not affect the cost function Lk at each iteration 
of optimization.
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Fig. 2 | Optical VQU in a quantum photonic processor. a, Pairs of photons are first generated via SPDC and delivered to a PNP that is mounted on top 
of a Peltier cooling system to maintain thermal stability. After propagating through the circuit, photons are out-coupled and delivered to an array of 
superconducting nanowire single-photon detectors (SNSPDs). Coincidence events are recorded by a time-correlated single-photon counting system 
(TCSPC), and are output to a classical computer that controls a micro-controller unit (µController) that drives all 176 on-chip thermo-optic phase-shifters. 
b, An optical micrograph of the 26-mode PNP showing all 240 wire bonds (including grounds) and in/out coupling via two custom-built photonic integrated 
circuits (PIC). The total footprint of the device is 4.9 × 2.2 mm. c, A schematic of the PNP with separate regions marked for the unsampling protocol. Each 
MZI comprises an internal θ and external ϕ phase-shifter (inset). The orange circuit implements the sampling operation, and the green and blue circuits 
implement the first and second layer of the unsampling protocol, respectively. The full protocol requires active control of 46 thermo-optic phase-shifters.
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Experimental unsampling
We implement a proof-of-concept demonstration of the optical 
VQU procedure on a state-of-the-art quantum photonic proces-
sor comprising three stages: photon generation via spontaneous 
parametric down-conversion (SPDC), reconfigurable quantum 
circuitry on a programmable nanophotonic processor (PNP), and 
single-photon detection, all within an actively configured feedback 
loop for optimization (see Fig. 2a). See Methods for a description of 
the full experimental set-up. The PNP comprises 88 reconfigurable 
Mach–Zehnder interferometers (MZIs) arranged in a mesh, which 
enables different regions of the device to be used for separate quan-
tum operations. In Fig. 2c the sampling circuit is shown in orange, 
and the unsampling layers are shown in green and blue.

The sampling circuit (Fig. 2c, orange) directly dials six MZIs (12 
phases) to generate a four-mode random unitary according to the 
Haar measure49. Two photons pass through the sampling circuit and 
the output state is fed into the first unsampling layer (Fig. 2c, green); 
a four-mode circuit acting on modes {1,2,3,4}. The classical opti-
mizer is programmed to find a single photon in optical mode 1 by 
minimizing ∼ϕ ϕ= −L P( ) 1 ( )1 4 1

1
4 . Each iteration of the optimization 

collects approximately 100 twofold coincidence events. As shown 
in Fig. 3a, the phases ϕ4 are first randomly initialized and L1 = 0.55 
and after 28 iterations of the optimization L1 = 0.20, which is at the 
noise floor of our experiment. The output state is then fed to the 
second unsampling layer; a three-mode circuit acting on modes {2, 
3, 4} (Fig. 2c, blue). The optimizer is set to find a single photon 
in mode 2 by minimizing ∼ϕ ϕ= −L P( ) 1 ( )2 2 2

1
2 . Crucially, by leaving 

mode 1 untouched L1 cannot increase. The phases ϕ2 are randomly 
initialized and L2 = 0.97. As shown in Fig. 3b, after just 20 stages 
of optimization L2 = 0.31, which is 1.3σ from the noise floor of our 
experiment.

The final fidelity of the VQU protocol, defined as the overlap 
between the initialization state and the output state F ψ ψ= ∣⟨ ∣ ⟩ ∣in out

2, 
was found to be F = . ± .0 695 0 053, which is 1.2σ from the maximal 
achievable fidelity given the noise floor of our experiment (Fig. 3a,b, 
green). This noise floor is primarily due to a low signal-to-noise 
ratio, caused by photon emission from our thermo-optic phase-
shifters and high fibre-to-chip coupling loss (−8 dB facet to facet). 

The deviation from the maximum possible fidelity is probably due 
to the performance of our optimizer in the presence of finite counts. 
Notwithstanding, we estimate the probability observed samples are 
due to random circuit settings to be p = 0.004 (see Methods for fur-
ther details). Future implementations will use either low-loss in/out 
couplers50 or on-chip single-photon sources51,52 and detectors53 to 
increase the signal-to-noise ratio and boost fidelity.

Alongside the proof-of-concept experimental demonstration, 
extensive numerical simulations were performed for up to six pho-
tons. In Fig. 4, we plot the number of iterations required to con-
verge to a fidelity of F = − −1 10 5, alongside an expected cubic fit 
for n = 100 runs (see Methods for further details). The efficiency 
of these numerical experiments suggests that the presence of local 
optima is limited and unlikely to prevent convergence for optical 
unsampling experiments.

Concluding remarks
We have introduced the VQU protocol: a nonlinear quantum neu-
ral network approach for verification and inference of near-term 
quantum processors. Our protocol leverages a divide-and-conquer 
approach that selects efficiently accessible subspaces of the entire 
Hilbert space for optimization. Within a layer-wise learning model, 
we simulate the effect of an unknown time-reversed quantum oper-
ation to recover a known input state. We demonstrated this protocol 
optically on a quantum photonic processor.

Our approach can be directly applied to the verification and 
certification of circuit outputs, and for the comparison and train-
ing of circuit ansatz. Moreover, VQU could also lend itself to the 
characterization of other physical processes that can be probed by 
quantum signals such as molecular excitations54. Applied to opti-
cal systems, VQU may find application as a subroutine in quantum 
cryptographic protocols55 or for optimal receivers for optical com-
munications56. Here, VQU is akin to adaptive optics for quantum 
optical systems, correcting quantum data transmission through 
turbulent free-space links or mode-mixing fibres. More gener-
ally, partial tomography schemes have direct application in a wide 
range of quantum information protocols where properties such as 
the topology or symmetry of a state are required. For example, in  
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 to find a photon in the second optical mode. The green line plots the experimental 

noise floor (see the text). The red points correspond to probability distribution time slices as shown in c. c, The probabilities for all six twofold coincidence 
events are plotted with error bars assuming Poissonian counting statistics. The first plot (top left) shows support across all coincidence events while at the 
end of the VQU protocol (bottom right) P = 0.695 ± 0.053 is found in the (1, 2) coincidence event, corresponding to the initialization state |1112〉.
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quantum error correction partial information about a quantum 
state can be used to estimate an error syndrome for bosonic error 
correction codes57 or diagnose systematic errors in quantum cir-
cuits58. Applying variational approaches such as VQU to error cor-
rection problems is a promising research direction.

As quantum processors push the limits of what is classically sim-
ulable and coherent control of quantum phenomena advances, the 
problem of quantum state and circuit verification represents a for-
midable challenge. We therefore anticipate VQU in particular, and 
other layer-wise learning models more generally, serving as a vital 
tool in the arsenal of the quantum engineer.
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Methods
Numerical methods. While the protocols we present in the body of the manuscript 
are agnostic to the particular optimization algorithm, in practice we necessitate 
two conditions: the optimization algorithm should be (1) local, so as to converge 
efficiently, and (2) gradient free, as in general the gradients will not be a priori 
known. We have determined through extensive numerical studies that the 
BOBYQA algorithm59 performs well in terms of speed and accuracy, satisfies (1) 
and (2) and is readily implemented in the NLOPT library60. Consequently, all 
numerical experiments presented in this manuscript use this algorithm.

Experimental set-up. Pairs of degenerate photons at 1,582 nm are generated 
via SPDC from a custom-fabricated periodically poled KTiOPO4 crystal under 
extended phase-matching functions61. Photon pairs are then collected into 
optical fibres and delivered to a PNP62–64 via a custom-built optical interposer 
that reduces the mode field diameter of the input fibres to better match that of 
silicon waveguides (Fig. 2b). The PNP consists of 176 individually tuneable phase-
shifters across 26 optical modes, fabricated in a complementary metal–oxide–
semiconductor (CMOS) compatible silicon photonics process. On-chip MZIs are 
controlled via two thermo-optic phase-shifters, with an internal phase shift θ for 
splitting ratio configuration and an external phase shift ϕ for phase configuration.

After passing through the PNP, photons are out-coupled and delivered to four 
tungsten silicide superconducting nanowire single-photon detectors with ~65% 
quantum efficiency for photon counting. Correlations across each channel are 
recorded by a time-correlated single-photon counting system, and are then fed  
to a classical computer for processing. On the basis of recorded coincidence events 

across all =( )42 6 coincidence channels {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

(where (i, j) represents a coincidence event between optical modes i and j), a 
classical optimizer running the local derivative-free BOBYQA algorithm59 varies 
the PNP layer phases to minimize a user-defined loss function.

Monte Carlo data analysis. To estimate the probability that our photon statistics 
are due to random circuit settings, we perform a Monte Carlo analysis. To do 
this, we numerically model our experiment and randomly sample N = 1,000 
phase-shifter values uniformly in the range ϕ ∈ π[0, 2 ). On the basis of these 
random circuit settings, we calculate N = 1,000 unique multi-photon probability 
distributions assuming a Hong–Ou–Mandel visibility of V = 0.9 (independently 
verified). For each distribution, we calculate the fidelity with the desired (that is, 
identity) distribution, finding a mean fidelity over random circuit settings to be 
F = .0 247. By analysing the subsequent probability density function of fidelities, we 
estimate the probability of finding a fidelity greater or equal to our measured fidelity 
F = .0 695 to be p = 0.004. We also determine the average fidelity when unitaries are 
sampled uniformly (according to the Haar measure) to be F = .0 167 and estimate 
the probability that our results are due to random unitaries as p = 0.002.

Optical VQU numerical experiments. In the following, we describe the optical 
VQU numerical experiments, for up to n = 6 photons, presented in Fig. 4. While 
optimizing ∼Pj

1
 for j ∈ [1, n] is sufficient to perform the VQU protocol, in many 

cases this performs poorly due to the number of parameters involved in the 
optimization and the absence of an analytic expression for the gradient. We 
determined that reducing the parameter set by first bringing all photons into the 
first n modes was superior in terms of speed and accuracy of the unsampling 
protocol.

To compress n photons into the first n modes, we perform the  
following protocol.

	1.	 Generate an n2-dimensional sampling unitary via the Haar measure.
	2.	 Pass the output state into an n2-dimensional unsampling circuit with all 

phases (α, ϕ)j,k = (0, 0).
	3.	 For j ∈ [1, n] and k ∈ [n2, 1], optimize (α, ϕ)j,k to minimize the photon flux in 

the k + 1 optical mode.

A single iteration of this protocol is sufficient to yield a >0.99 probability  
of all photons in the first n modes. To achieve numerical accuracy, we repeat this 
three times.

Next, to unsample n photons in n modes, we perform the following protocol.

	1.	 Pass the output state into an n-dimensional unsampling circuit with all phases 
(α, ϕ)j,k = (0, 0).

	2.	 Maximize the probability of any event, ∼P
n

1 , in the j = 1 optical mode over all 
parameters (α, ϕ)j,k.

	3.	 Append an (n − 1)-dimensional unsampling circuit acting on modes [2, n] 
and maximize ∼P

n
2 .

	4.	 Repeat for a (n − j)-dimensional circuit and ∼Pj
n
 for j ∈ [3, n − 1].

In case numerical accuracy is not achieved, we allow for random restarts, 
which is included in the total number of iterations plotted in Fig. 4. To estimate 
the scaling, we fit the number of iterations required to reach numerical accuracy, 
against the photon number, for a range of hypothesis models. In Table 1 we show 
the 1 − R2 error for each model.

Data availability
The datasets generated during and or analysed during the current study are 
available from the corresponding author on reasonable request.

References
	59.	Powell, M. J. The bobyqa algorithm for bound constrained optimization 

without derivatives (2009).
	60.	Johnson, S. G. The NLopt nonlinear-optimization package (2011);  

http://ab-initio.mit.edu/nlopt
	61.	Chen, C. et al. Efficient generation and characterization of spectrally 

factorable biphotons. Opt. Exp. 25, 7300–7313 (2017).
	62.	Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
	63.	Harris, N. C. et al. Quantum transport simulations in a programmable 

nanophotonic processor. Nat. Photon. 11, 447–452 (2017).
	64.	Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 

1623–1631 (2018).

Acknowledgements
We thank E. Farhi, E. Grant, D. Hangleiter, I. Marvian, J. McClean, M. Pant, M.  
Schuld, P. Shadbolt, S. Sim and G. Steinbrecher for insightful discussions. This work 
was supported by the AFOSR MURI for Optimal Measurements for Scalable Quantum 
Technologies (FA9550-14-1-0052), the MITRE Quantum Moonshot Program and by the 
AFOSR programme FA9550-16-1-0391, supervised by G. Pomrenke. J.C. is supported by 
EU H2020 Marie Sklodowska-Curie grant number 751016.

Author contributions
J.C., M.M., S.L. and D.E. conceived the project. J.C., M.M., J.P.O., M.Y.N, S.L. and D.E. 
developed the theory. J.C., M.P., C.C., D.B., N.C.H., F.N.C.W., M.H. and D.E. contributed 
to the experimental set-up. J.C., M.P., C.C. and D.B. performed the experiment and 
analysed data. J.C. performed numerical experiments. All authors contributed to the 
discussion of the results and the writing of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41567-019-0747-6.

Correspondence and requests for materials should be addressed to J.C.

Peer review information Nature Physics thanks Ashley Montanaro and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Table 1 | Error in fit parameters for optical VQU scaling

Model 1 − R2 error

a + bx 0.12
a + bx + cx2 1.5 × 10−3

a + bx + cx2 + dx3 9.6 × 10−7

a + becx+d 1.1 × 10−3
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