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Abstract

Photonic approaches to quantum information science and technology promise new

scientific discoveries and new applications. Linear optics underpins all of these

protocols, and the advent of integrated quantum photonics has has brought with

it a step change in complexity and control over quantum photonic systems. As

systems scale up, near-term nonclassical computational possibilities emerge, as

does the prospect of practical quantum technologies.

In this work we present a series of linear optical processors comprising the

union of a multi-photon source, active and passive waveguide devices, and a single-

photon detection system; and use these systems to explore a multitude of quantum

information processing protocols. We propose and implement efficient and robust

techniques for device level characterisation of linear optical circuitry, where full

scale tomographic techniques become intractable. We demonstrate machine level

verification protocols for systems whose complexity renders them formally unveri-

fiable, demonstrating the efficacy of our protocols on systems of up to five photons

in 21 waveguides, generating Hilbert spaces of 50, 000 dimensions. Finally we

present a fully reconfigurable universal linear optical processor with sufficient con-

trol to implement all possible linear optical protocols up to the size of the circuit.

We programme this device to implement heralded quantum logic gates and en-

tangling operations, simultaneous bosons sampling and verification protocols and

six dimensional complex Hadamard operations. These results and techniques will

find application as large scale universal linear optical processors begin to replace

existing and future prototype systems.
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1
Introduction

The purpose of a scientific theory is to explain observations within a coherent

framework, in turn giving rise to falsifiable predictions that via the scientific

method can be tested, thus corroborating or contradicting that theory. By this

criteria there can be no greater scientific theory than that of understanding and

explaining precisely how nature works at her most fundamental level. Quantum

mechanics describes physical phenomena at the atomic, and sub-atomic scale. Ar-

guably, it is our most well tested scientific theory, and has resulted in measurements

of 1 part in 1014 for the magnetic moment of a single electron [1] and 1 part in

1020 for the radius of a proton [2].

Whilst the pursuit of scientific knowledge is largely driven by a demand for new

technology, developing a deeper understanding of nature at the fundamental level

is interesting in and of itself. By illuminating as of yet unseen corners of reality

1



1. Introduction

we open ourselves up to anomalous results which ultimately drive paradigm shifts

in human understanding [3]. However, there is a second virtue to exploring the

depths; the lessons we learn, the techniques we develop, the hurdles we overcome

may find application in wholly disparate corners of humanity. Let us consider two

examples from the 20th century. Bardeen, Shockley and Brattain’s discovery of

the transistor at Bell Labs, and Berners-Lee’s invention of the World Wide Web

at CERN. Is it likely these scientists could have foresaw the changes to society

that the fundamental research into semi-conductors or particle physics might have

had? Quantum technologies follow in precisely the same vane; utilising the laws

of nature at her most fundamental level to build new machines, with intrinsic

advantage in precision or computational power, over their classical counterparts.

Historically photons have played a central role in the development of quantum

mechanics: from Einstein’s postulate of the quantised nature of light [4] to early

demonstrations of Bell nonlocality [5–8]; the photon is both an invaluable con-

ceptual and practical tool. More recently, due to their ease of manipulation, low

noise properties and light speed propagation, photons have emerged as exceptional

carriers of quantum information [9].

It had been known for some time that photons in linear optical circuits are

in principle an efficient platform for quantum information processing and quan-

tum computation [10]; yet it wasn’t until the development of integrated quantum

photonics [11, 12] that this platform became practical. Using the same CMOS

compatible fabrication processes that are used in the microelectronics industry,

micron scale silicon-based waveguides are fabricated, allowing the manipulation of

single photons on-chip [11–19]. This has opened up a new regime, not only for

scalability, but also for the monolithic integration of on-chip photon sources [20]

and detectors [21].

Integration enables greater scalability for photonic quantum information pro-

cessing, yet there remain significant hurdles for the construction of a universal

linear optical quantum computer (LOQC). Significantly, because photons effec-

tively do not interact with one another — one property that contributes to their

2



effectiveness as quantum bits — realising the qubit-qubit interactions required

for large scale quantum information processing is challenging. Overcoming this

challenge seems possible but places a large overhead on the resources required for

LOQC.

Whilst the ultimate aim of the field remains a universal LOQC, a recent the-

oretical breakthrough [22] has shown that even in the absence of logic gates and

entangling operations, linear optics is still a platform intractable to classical sim-

ulation, requiring much fewer resources. The realisation of such a non-universal

LOQC is both of fundamental interest and practical application. Whilst it would

demonstrate that linear optics can be harnessed for nonclassical computational

capabilities, it would also be a stepping stone towards universal quantum com-

putation; further driving interest in integrated quantum photonics [23–26]. The

major goal of this nascent field is therefore to scale these systems up, to the regime

where classical computers fail. As we near this goal we are met with a number

of significant challenges: How can the correct operation and quantum complexity

of these devices be verified if they cannot be simulated or checked with classical

computers? Since full tomography of large quantum systems is intractable, how

can these new devices be meaningfully characterised? Addressing these related

challenges has been a major part of this thesis.

Finally we address a major outstanding goal of the field. It has been known

for 30 years that it is theoretically possible to construct a single device with suf-

ficient versatility so as to implement any possible linear optical operation up to

the specified number of modes [27]. Such a universal linear optical device, would

replace a multitude of current and future prototype systems, and would represent

a step change in the development of new quantum protocols. Realising this scheme

requires high fidelity fabrication and operation of many reconfigurable waveguide

elements, which up until now has not been possible. In this thesis we present a

fully reconfigurable universal linear optical processor across six photonic modes

and programme it to implement a variety of protocols at the forefront of quantum

information science and technology.
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1. Introduction

1.1 Thesis Outline

Throughout this thesis we describe a series of novel concepts and techniques for

quantum information science with photons, alongside the development and appli-

cation of integrated photonics. Specifically we demonstrate how the generation,

manipulation and detection of single photon states can be brought together in a

single machine — a linear optical processor — capable of performing a multitude

of quantum information processing tasks. This work is structured as follows:

Chapter 2 introduces the theoretical framework for the experiments presented

within this thesis — drawing on concepts from mathematics, computer science and

physics — and explores in detail the platform of photons in linear optical circuits.

Chapter 3 introduces the photonic hardware used to realise the photonic proces-

sors presented: a multi-photon source, active and passive waveguide devices and

a single photon detection system, alongside the underlying physics which governs

their operation. Chapter 4 presents a toolbox of hardware level characterisation

techniques for efficiently determining the description of a linear optical circuit and

demonstrates the efficacy of these techniques via both experimental and numerical

analysis. Chapter 5 brings these components together to present fixed, passive

linear optical processors. This analogue quantum simulator generates quantum

photonic states with up to five photons in optical circuits of 21 waveguides, pro-

ducing a Hilbert space of up to 50, 000 dimensions; motivating the development of

new, efficient techniques with which to verify quantum complexity for these class

of systems. Chapter 6 presents a fully reconfigurable universal linear optical pro-

cessor, with sufficient versatility to implement all possible linear optical protocols

up to the size of that circuit. This added capability is a step change in complex-

ity and control compared with previous demonstrations. Chapter 7 applies this

universal device to a variety of quantum information processing protocols, from

new entanglement generation schemes to the first integrated implementation of

heralded quantum logic gates. Finally, Chapter 8 summarises these results and

provides an outlook for future research.
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I was in a sort of ecstasy. . . Absorbed in the contemplation of

sublime beauty. . . I reached the point where one encounters ce-

lestial sensations. . . Everything spoke so vividly to my soul. Ah,

if I could only forget. I had palpitations of the heart. . . Life was

drained from me. I walked with the fear of falling.

Stendhal (on seeing Giotto’s frescoes for the first time)

2
Background

2.1 Introduction

In this chapter we provide a theoretical framework for the experiments presented

in this thesis. The mathematics, physics, and computer science material of this

chapter reflects the cross-disciplinary nature of quantum information science. The

physics of the photonic hardware relevant to this thesis is discussed in the following

chapter; here we concentrate on the more general scenario of linear optical quantum

computing (LOQC) and the mathematical formalism which underpins it.

The purpose of this chapter is three-fold: to define the relations that will

be used throughout; to elucidate the concepts from the authors own personal

perspective; and to direct the reader to the relevant texts and research which both

found and advance the field.
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2. Background

In Section 2.2 and 2.3 we introduce basic concepts from quantum mechanics

and discuss quantum systems as information carriers. We then present the relevant

foundations of classical computing and computational complexity in Section 2.4,

and introduce the related concepts from quantum complexity and quantum com-

puting in Section 2.5. Finally in Section 2.6, we explore in detail the platform of

photons in linear optical circuits; the theoretical framework which will underpin

the forthcoming experiments in linear optical quantum information processing. In

addition to standard texts which are referenced within, this chapter draws on ma-

terial from the theses of N. K. Langford, A. Politi, J. C. F. Matthews, A. Laing

and P. J. Shadbolt.

2.2 Quantum Mechanics

Quantum mechanics is the set of rules which typically governs phenomena at the

atomic and subatomic scale. Whilst it defies our intuition, and much of 20th cen-

tury physics has been spent trying to test it, much of the important mathematics

is beautifully simple. At its heart quantum mechanics deals with probability am-

plitudes, and to see this we don’t need years of training and university degrees,

rather, a simple thought experiment will suffice: the double slit experiment. To

do this we follow the elegant formulation of Feynman who notes

“We choose to examine a phenomena, which is impossible, absolutely

impossible, to explain in a classical way, and which has in it the heart

of quantum mechanics. In reality, it contains the only mystery.”

R. P. Feynman [28]

2.2.1 The Paintball gun

Consider a wall with two nearby holes in. Behind the wall is a second wall covered

in white paint. We get a paintball gun and start firing, randomly, at the two holes;
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2.2. Quantum Mechanics

p1(x) p2(x)

|I1(x)+I2(x)|2 p1(x)+p2(x)

x

Figure 2.1: The double slit experiment. Dashed red lines represent the individual

distributions when a single hole is open for both particles and waves. Red solid line

shows the combined distribution due to particles P12(x) = P1(x) +P2(x) whilst the blue

solid line due to waves I12(x) = |I1(x) + I2(x)|2.

where, on average, does the paint end up? Let us assume for convenience that

whenever a paintball lands in one of the holes, it has insufficient force to burst

and bounces towards the white wall, in some unpredictable direction. Because

paintballs are discrete lumps, that shoot one at a time (never two at a time), we

can treat each possibility separately: either it goes through the first hole or second.

If we were to fire just at the first hole most of the paint would be directly in front

of that hole with a bit less as the distance increases. Let us call the distribution

of paint due to the first hole as P1(x), and similarly for the second as P2(x). The

resulting distribution of paint is simply the sum of these distributions

P12(x) = P1(x) + P2(x), (2.1)

telling us paintballs do not interfere with one another.
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2. Background

2.2.2 Water waves

Now let us play the same game with water waves on a still pond. To do this we

splash circular waves behind two holes set into the water, and behind the holes is a

another wall which measures the intensity I(x) of the impinging waves1, what is the

resulting intensity? As the circular wavefront simultaneously hits both holes, it is

as if we had two wave sources. For each individual source the intensity distribution

is the same as for the paintballs, but when both holes are open we get a radically

different pattern due to interference; I12(x) 6= I1(x) + I2(x). At certain locations

along the wall the waves are in-phase and we see a large intensity, and at certain

locations they are out of phase and we see a low intensity.

More concretely we describe the water wave due to hole 1 at time t by a rotating

vector ~h1 = h1e
iωt on the complex plane such that the intensity is I1 = |~h1|2. The

total intensity is therefore

I12 = |~h1 + ~h2|2 (2.2)

= I1 + I2 + 2
√
I1I2 cos[δ(x)] (2.3)

where the final term represents the interference and δ(x) is the phase difference

between the two waves.

2.2.3 Electrons

Let us now imagine a final experiment with quantum particles. We fire electrons,

one at a time at a double slit2 and place a detector along the wall which clicks when

an electron hits it. What we first notice is that while the clicks are erratic, they are

truly full clicks, no half clicks. That is, one and only one electron passes through

the holes at a given instant. We can then calculate the probability for an electron

to appear at a given position P12(x) = n12(x)/N by collecting n12(x) out of a total

1If the height of the wave is h(x, t) the intensity at a position x is the average height I(x) =
∫
h(x, t)2dt.
2This time the holes must be much smaller than before, on the order of the DeBroglie wave-

length of the electron.
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2.2. Quantum Mechanics

of N events. Now, we might expect electrons, because of their discrete nature,

to behave like paintballs. Surprisingly, we observe precisely the same interference

pattern as for water waves [29]. This phenomena has been observed experimentally

for neutrons [30], atoms [31, 32] and molecules [33–36].

So which hole did the electron pass through? Let us place a detector at each

hole. If the electron is a wave then we should be able to observe both detectors

firing simultaneously, however we never see this. Therefore the statement “the

electron is either a particle or wave” gives rise to a contradiction:

• If the electron is a particle, we should not see an interference pattern — but

we do.

• If the electron is a wave, we should never see just one detector click — but

we do.

We arrive at wave-particle duality, and the inadequacy of classical language to

describe quantum systems. In this single thought experiment we have the essence

of quantum mechanics.

2.2.4 Probability Amplitudes

Whilst mental gymnastics may be necessary to interpret these results, the math-

ematics is beautifully simple. Much like water waves, each event (the electron

passing though hole 1 or 2) can be described a complex number ψ(x) called a prob-

ability amplitude. If we close hole 2 and therefore know the electron passes through

hole 1 the probability to find it at a given position is given by P1(x) = |ψ1(x)|2.
If however both holes are open, and there are multiple possible ways an event can

occur, we sum these events at the probability amplitude level

P (x) = |ψ1(x) + ψ2(x)|2. (2.4)

This tells us something deep about quantum mechanics: If you want to calculate

the probability of an event occurring in the lab (i.e. a detector clicking or an
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2. Background

atom decaying) but there are multiple ways it could happen and you don’t know

which — moreover, it is completely impossible to know which — you must sum the

events at the probability amplitude level. This summing of probability amplitudes

is not only at the heart of the rich phenomena observed within this thesis, but all

experiments in quantum mechanics.

2.2.5 Axioms of Quantum Mechanics

Whilst we have alluded to the peculiarities of quantum states, we can be more

precise in our formulation of quantum mechanics. In particular we wish to under-

stand how the mathematical framework of quantum mechanics represents states,

observables, measurements and evolution. To this end, and for completeness we

now present the axioms of quantum mechanics following Preskill [37].

1. States

A quantum state is a full description of a physical system and is represented

by a ray in Hilbert space Hd, a finite3 d-dimensional complex inner product

vector space over Cd. A ray is an equivalence class of vectors |ψ〉 that differ

by multiplication by a nonzero complex scalar, thus states |ψ〉 and eiφ |ψ〉
are physically equivalent.

2. Observables

An observable is a property of a system that can be measured and is described

by a Hermitian operator Â = Â†. An operator is a linear map taking vectors

to vectors such that

Â : |ψ〉 → Â |ψ〉 ; Â : α |ψ〉+ β |φ〉 → αÂ |ψ〉+ βÂ |φ〉 . (2.5)

An observable Â has a spectral representation such that its eigenstates form

a complete orthonormal basis in Hd

Â =
∑

n

anP̂n (2.6)

3Quantum mechanics is equally well defined over an infinite dimensional Hilbert space but

for the work presented here finite dimensions suffice.
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2.3. Quantum Information

where P̂n = |an〉 〈an| is the projection onto the space of eigenstates |an〉 with

eigenvalue an.

3. Measurements

The outcome of a measurement of an observable Â is an eigenvalue an such

that after the measurement the state |ψ〉 is in the measured eigenstate |an〉.
The probability of an outcome an

Prob(an) = 〈ψ|P̂n|ψ〉 , (2.7)

and the state becomes

|ψ〉 an−→ P̂n |ψ〉√
〈ψ|P̂n|ψ〉

. (2.8)

4. Evolution

The time evolution of a closed quantum system is described by the Schrödinger

equation

ih̄
d |ψ〉
dt

= Ĥ |ψ〉 (2.9)

where Ĥ is a Hermitian operator known as the Hamiltonian of the sys-

tem. This time evolution can therefore be described by the unitary operator

Û(t) = exp[−iĤt/h̄] such that |ψ(t)〉 = Û(t) |ψ(0)〉. Throughout this thesis

we will deal in units of h̄ = 1.

The beauty of quantum mechanics is that while these axioms are straightforward

to state, the phenomena they give rise to are anything but. Whilst much of 20th

century physics has been concerned with observing physical phenomena and testing

these axioms, towards the end of that century the focus began to shift towards

using these phenomena for new applications and technologies.

2.3 Quantum Information

In the classical world, physical systems such as the localised magnetic field of a

hard disk drive or engravings on a stone tablet, are used to encode information. As
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Landauer famously asserted “information is physical” [38] — that is, information

processing is in some sense incomplete unless the information carrier is considered.

In the classical regime, understanding the physics of these information carriers has

led both to significant practical advances — with transistors reaching the size of

several atoms [39] — and significant conceptual advances — with investigations

into the thermodynamics of information carriers telling us something about the

fundamental limits to computation [40, 41].

In a dynamic random-access-memory (DRAM) classical bits are encoded in

the charge across a capacitor. Typically, the capacitance of these systems is ∼
30 fF [42] which, with a ∼ 1 V potential, has a charge of Q = C/V ≈ 10−14 C.

Therefore a single classical bit corresponds to the collective state of 10−14/10−19 ≈
105 electrons. From the perspective of quantum mechanics, a very natural question

to ask is: what happens when we no longer have 105 particles, but rather just a

single particle?

2.3.1 The Qubit

Quantum information is concerned with using the rules of quantum mechanics to

process information, in ways that are radically different from classical information

processing [43]. In a classical computer the information carrier exists in a well

defined binary state 0 or 1. In a quantum computer the information carrier, the

qubit, exists in a well defined state in the two dimensional Hilbert space H2,

over the basis states {|0〉 , |1〉}. However, much like the electron has a probability

amplitude associated with the being in both holes, a qubit can exist in a linear

superposition of these basis states

|ψ〉 = α |0〉+ β |1〉 (2.10)

where α, β are complex numbers such that |α|2+|β|2= 1. It will be convenient to

represent the qubit as a vector |ψ〉 = [α, β]ᵀ. Recalling the state axiom, up to a

typically unimportant global phase the qubit can be rewritten as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 . (2.11)
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Figure 2.2: The Bloch sphere representation of a single qubit. A pure single

qubit state state |ψ〉 can be represented as a point on the surface of the Bloch sphere,

with axes representing Pauli eigenstates as shown.

Now (θ, φ) parameterise a point on a unit three-dimensional sphere called the

Bloch-sphere, shown in Fig 2.2. This representation will be useful later for visual-

ising the evolution of states. According to the observable axiom we can construct

a measurement which projects this state onto the basis {|0〉 , |1〉}, such that with

probability |α|2 we get the outcome |0〉 and with probability |β|2 we get |1〉.

2.3.2 Single Qubit Operations

In analogy to classical computing where NOT takes 0 → 1 and 1 → 0, we can

construct single qubit operations provided they obey the evolution postulate and

are unitary. Some single qubit operations of interest are

X̂ ≡


0 1

1 0


 ; Ŷ ≡


0 −i
i 0


 ; Ẑ ≡


1 0

0 −1


 ; Ĥ ≡ 1√

2


1 1

1 −1


 , (2.12)
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Input Output

|0C0T 〉 |0C0T 〉
|0C1T 〉 |0C1T 〉
|1C0T 〉 |1C1T 〉
|1C1T 〉 |1C0T 〉

Table 2.1: CNOT truth table. Computational state transformations on the control

C and target T qubits for the CNOT operation.

and act upon qubits via matrix multiplication. For example X̂(α |0〉 + β |1〉) →
β |0〉+ α |1〉, and is the quantum analogue of the NOT gate. Quantum gates can

be combined in linear superpositions to create new gates and obey certain identity

relationships, for example Ĥ ≡ (X̂ + Ẑ)/
√

2.

2.3.3 Multiple qubits

The state space of a multi-qubit system is constructed via the tensor product of the

composite systems. For example the state space of a two qubit system is given by

{|00〉 , |01〉 , |10〉 , |11〉}, therefore a two qubit state is a vector in H4 described by

four parameters |ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉. More generally, an n-qubit

system is described by 2n parameters.

We can construct multi-qubit gates which conditional on the state of one qubit

(the control), operates on the other qubit (the target). Consider the quantum

analogue of the XOR, the controlled-NOT (CNOT), which flips the target con-

ditional on the control being |1〉, as shown in Table 2.3.3. This can be represented

as a matrix in the computational basis as

ÛCNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



. (2.13)

We can act this upon the state ĤC ⊗ ÎT |0C0T 〉 (where Î is the identity operator)
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such that

ÛCNOT

(
ĤC ⊗ ÎT |0C0T 〉

)
= ÛCNOT

(
1√
2

(|0C〉+ |1C〉) |0T 〉
)

(2.14)

=
1√
2

(|0C0T 〉+ |1C1T 〉). (2.15)

This state cannot be written as the product of two single qubit states. To see this

consider the tensor product of two arbitrary single qubit states

|ψC〉 ⊗ |ψT 〉 = (α |0C〉+ β |1C〉)⊗ (γ |0T 〉+ δ |1T 〉) (2.16)

= αγ |0C0T 〉+ αδ |0C1T 〉+ βγ |1C0T 〉+ βδ |1C1T 〉 . (2.17)

To remove the |0C1T 〉 term either α or δ must be zero, if α = 0 then |0C0T 〉 = 0,

if δ = 0 then |1C1T 〉 = 0. Generally any state of this form |ψ〉AB 6= |φ〉A ⊗ |χ〉B is

said to be entangled.

2.3.4 Entanglement

Entanglement provides us with a shocking insight into the nature of reality. Al-

though the idea was first brought to attention by Einstein, Podolsky and Rosen in

1935 [44]; it wasn’t until Bell’s theorem was formulated in the 1960s [5], and ex-

perimentally tested in the 1970s and 1980s [6–8], that the idea was taken seriously

as a valid way of understanding nature.

Bell proved that the predictions of quantum theory are incompatible with a

seemingly natural notion of locality. Nature is fundamentally nonlocal. Following

the comprehensive review of Brunner et al. [45] we can see this via a simple game.

Consider two players Al and Charlie who each get given a quantum state. They

are allowed to make measurements on their state, let us call Al’s measurement

choice x ∈ {0, 1} and Charlie’s y ∈ {0, 1}, that have an outcomes a ∈ {+1,−1}
and b ∈ {+1,−1} respectively. We will be interested in the joint probability of

measurement outcomes, that is p(ab|xy).

In general

p(ab|xy) 6= p(a|x)p(b|y), (2.18)
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and this is no mystery. Even if the measurements are performed in a space-like

separated manner, perhaps the particles came from the same source, so they have

some pre-assigned values, a set of rules about how to behave. We call these pre-

assigned rules ‘hidden variables’ λ. Now these rules might be very complicated,

perhaps a probability distribution q(λ), but in principle it should be possible to

write down exactly what the set of rules are such that p(ab|xy) can be made

separable

p(ab|xy) =

∫

λ

dλq(λ)p(a|x, λ)p(b|y, λ), (2.19)

and this simply expresses locality; that the outcome of a only depends on the set

of rules q(λ) and the measurement x — wholly reasonable!

Consider the quantity

S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 (2.20)

where 〈axby〉 =
∑

ab ab p(ab|xy) is the expectation value of the joint measurement

(x, y). By the locality assumption this joint expectation value is a product of

individual expectation values 〈axby〉 =
∫
dλq(λ) 〈ax〉λ 〈by〉λ, and as 〈ax〉 , 〈by〉 ∈

[+1,−1], we arrive at the Clauser-Horne-Shimony-Holt inequality [46]

|S|≤ 2. (2.21)

Giving Al and Charlie either half of the entangled state |ψ〉 = (|01〉 − |10〉)/
√

2,

and letting

x0 = Ẑ; x1 = X̂; y0 =
−Ẑ − X̂√

2
; y1 =

Ẑ − X̂√
2

, (2.22)

yields 〈a0b0〉 = 〈a0b1〉 = 〈a1b0〉 = 1/
√

2 and 〈a1b1〉 = −1/
√

2, hence

S = 2
√

2 > 2 (2.23)

in contradiction with (2.21). Since the seminal experiments of Freedman and

Clauser [6] and Aspect et al. [7, 8], this violation has been observed countless

times in many different laboratories across the world. This thus tells us the seem-

ingly reasonable assumption of locality — that the state of a particle cannot be
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2.4. Classical Computing

affected by events outside of its light cone — is incompatible with the predic-

tions of quantum mechanics. Whilst the maximally mixed reduced state for each

party makes individual outcomes inherently random (thus preventing faster than

light communication); this result does provide us with the tantalising possibility

that quantum mechanics somehow offers an advantage for certain tasks. It is this

intuition we seek to develop in the forthcoming sections.

2.4 Classical Computing

To understand any potential advantage a computer processing quantum informa-

tion may offer, we must first understand the limits of classical computers. As laid

out by Turing in 1936 [47], the theory of universal computation means we don’t

have to consider each type of computer on a case-by-case basis to understand how

well it processes information. That is, we don’t have to understand how an Ap-

ple Mac or Playstation or Casio calculator works, we simply have to consider a

universal Turing machine.

2.4.1 The Turing Machine

A Turing machine consists of a device that mechanically operates on a tape ac-

cording to a set of rules. Specifically, the tape is split into cells, such that the

machine reads one, and only one cell at a give instant; and on each cell is a symbol

from a finite alphabet Si [see Fig. 2.3(a)]. The machine itself has an internal state

Qi which can be updated. The machine takes as input (Qi, Si) and performs three

tasks: writes a new symbol Sj, updates the internal state Qj and moves left or

right D, according to the set of rules (or functions)

Qj = f(Qi, Si); Sj = g(Qi, Si); D = d(Qi, Si). (2.24)

The machine is completely determined by this set of functions, which will be some

large look up table [see Fig. 2.3(b)], and can be thought of as the programme for

the computer. Finally, when the computation is finished, the machine must halt.
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Si

D Qi

in out
Qi Si Qj Sj D
0 0 0 0 R
0 1 1 0 R
1 0 1 0 R
1 1 0 0 R
0 E HALT 0 –
1 E HALT 1 –

(a) (b)

Figure 2.3: The Turing machine. (a) A schematic of a Turing machine displaying

the internal state of the machine Qi, the tape symbol Si and the direction D. (b) A

particular rule set (programme) for computing the parity of a binary function taken from

Feynman [48].

As an example, you might imagine a programme for multiplying numbers together;

the user input will be writing these numbers as symbols onto the tape, and the

machine will whirl away, reading and writing symbols until it halts and the answer

is written onto the tape.

The main result of Turing was understanding the existence of computable and

uncomputable functions. The details of this can be found in Arora and Barak

[49], but for our purpose, Turing’s important result was the existence of universal

machines. He showed there exists a universal computing machine (with some

specific set of rules) which can simulate any possible computing machine (with

any set of rules). The description of the machine to be simulated (i.e. the set of

rules and input data) is fed into the universal machine via its input tape. The

universal machine then performs this computation and prints an output as if it

was the simulated machine.

In his paper Turing laid the foundations for something which seems second

nature today: programmable computers. His result means you don’t need one

machine for playing games, one for internet shopping — a single device can do all

this. The theme of universality will play a major role of this thesis.
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2.4.2 Computational Complexity

We can begin to consider the types of problems a computer might be used to

solve. It is often convenient to group these problems into complexity classes. The

types of problems that can be solved in a given complexity class is of fundamental

importance to both classical and quantum computing, and to the experiments

presented in this thesis. In the following exposition we draw from the entertaining

overview of Aaronson [50], and the technical overview of Arora and Barak [49].

Generally, we are interested in the scaling of resources, whether that is time or

space (i.e. how long my computer has to run for, or how much memory it requires),

that are required to solve a given decision problem as the size of the problem

increases. Note, decision problems output a ‘yes’ or ‘no’ answer, as opposed to a

numerical answer; e.g. “is the nth digit of integers a× b a ‘1’?” Formally we say a

machine decides a language L ⊆ {0, 1}* if it computes the function fL : {0, 1}* →
{0, 1}, where fL(x) = 1 when x ∈ L. Let us define some common complexity

classes:

• P is the class of decision problems solvable by a deterministic Turing machine

in polynomial time. More formally, a language L is in P if and only if there

exists a Turing machine that runs in time nc, for some constant c > 0, and

decides L.

• BPP is the class of decision problems solvable by a probabilistic Turing ma-

chine (i.e. a Turing machine with access to randomness) in polynomial time

with an error probability less than 1/3. Formally, a language L is in BPP if

there exists a probabilistic Turing machine M that runs in polynomial time

nc, for some constant c > 0, and for every x ∈ {0, 1}∗, Pr[M(x) = L(x)] ≥
2/3

• NP is the class of decision problems for which, if the answer is yes, there exists

a polynomial-size proof that lets you verify that answer in polynomial time.

Formally a languages L is in NP if there exists a polynomial p : N → N,
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and a polynomial-time Turing machine M (called the verifier for L) such

that for every x ∈ {0, 1}*, if x ∈ L there exists a u ∈ {0, 1}p(|x|) such that

M(x, u) = 1.

• NP-complete is the class of decision problems which are (1) in NP and (2)

all problems in NP can be efficiently reduced to it.

Throughout this thesis we will interchangeably use the terms efficient, or

tractable for problems that can be solved in polynomial time. Notable problems in

P include graph connectivity, 2-SAT and matrix multiplication. Problems in NP

are of the form “does there exist an n-bit string x such that f(x) = 1?” Whilst

finding x may take exponential time, computing f(x) can be done efficiently. No-

table problems in NP that are not known to be in P nor NP-complete are integer

factorisation and graph isomorphism. Finally, NP-complete problems can be seen

as the hardest problems in NP. If an efficient algorithm exists to solve a single

NP-complete problem then all problems in NP can be solved efficiently. Notable

problems include the Travelling Salesman problem and the Graph colouring prob-

lem.

2.5 Quantum Computing

“So now we’ve got this beautiful theory of quantum mechanics, and the

possibly-even-more-beautiful theory of computational complexity. Clearly,

with two theories this beautiful, you can’t just let them stay single —

you have to set them up, see if they hit it off.”

Scott Aaronson [50]

Deutsch in 1985 [51] realised that implicit in the work of Turing (and in parallel

Church [52]) was a statement about physics. The result of Church and Turing can

be summarised as the Church-Turing thesis:
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“Every function which would naturally be regarded as computable, can

be computed by the universal Turing machine”

David Deutsch [51]

For something to be “naturally regarded as computable” it must be computed

in nature. So the Church-Turing thesis is a claim about a universal Turing ma-

chine’s ability to compute anything in nature. To this end Deutsch set about

constructing a universal quantum machine which used quantum bits to store in-

formation and quantum gates to process information, and showed it could solve

a black box problem fundamentally quicker than a deterministic Turing machine.

This was later generalised by Deutsch and Josza [53] demonstrating exponential

speedup.

Whilst this exponential speedup was the first suggestion a quantum machine

may offer computational advantage, the black box scenario was somewhat con-

trived, and offered no speed-up over a probabilistic Turing machine. It was later

shown by Bernstein and Vazirani [54] that a genuine super-polynomial separa-

tion was possible between a quantum computer and a probabilistic computer, and

shortly after by Simon [55] that an exponential separation could be achieved for a

black-box period finding problem4.

2.5.1 BQP

For completeness let us explicate the ingredients for a universal quantum computer.

We must be able to initialise the state of the computer in some polynomial size

input |x〉 |0 . . . 0〉, where x encodes the input to the problem. We must be able

to transform the state via application of a polynomial number of gates from a

universal gate set, and finally we must be able to measure a qubit which encodes

the answer, for example accepting if |1〉 and rejecting if |0〉. We can therefore

define the complexity class BQP [54]:

4Only recently experimentally demonstrated [56].
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A language L is in BQP if there exists a family of polynomial-size

quantum circuits {Cn} such that ∀ x ∈ {0, 1}n:

• if x ∈ L, then Cn accepts |x〉 |0 . . . 0〉 with probability at least 2/3,

• if x /∈ L, then Cn accepts |x〉 |0 . . . 0〉 with probability at most

1/3.

Remarkably little is known about the exact relationship of BQP to other com-

plexity classes. Bernstein and Vazirani showed that BPP ⊆ BQP ⊆ PP5: that is

quantum computers are at least as fast as classical computers, and no more than

exponentially fast. But it wasn’t until Shor’s groundbreaking algorithms for in-

teger factorisation and discrete logarithms [58] that strong evidence was provided

that BPP 6= BQP.

Shor (directly inspired by Simon) constructed an efficient quantum algorithm,

based on the quantum Fourier transform, which is able to give the decomposition

of a composite number N as a product of two primes N = p× q; a problem which

is so strongly believed to be in NP that we base our modern cryptographic systems

on it [59, 60] This was the first strong evidence that BQP was able to efficiently

solve problems outside of BPP (the corresponding classical complexity class).

Understanding which problems in BQP offer speed-ups over their classical coun-

terparts is a central question for quantum algorithms6. Algorithms broadly fall

into three categories: First, ones relying (like Shor’s) on the quantum Fourier

transform to give an exponential speed up (see for example Kitaev’s discovery for

solving the Abelian stabiliser problem [61]); second, algorithms based on Grover’s

algorithm for unstructured database search [62] giving a quadratic speedup; third,

algorithms based on Hamiltonian simulation giving an in principle exponential

speed up7 [63] (such as the quantum algorithm for linear systems of equations

[64], which has recently found application in machine learning tasks [65, 66]).

5With the upper bound proven by Adleman et al. [57]
6For an exhaustive list see http://math.nist.gov/quantum/zoo/.
7The subtlety is that while the algorithm may run efficiently, encoding or reading out infor-

mation can often prevent apparent speed up.
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2.5.2 Building a quantum computer

While computer scientists are necessarily concerned with developing and under-

standing quantum algorithms, experimental scientists are necessarily concerned

with building apparatus to implement quantum algorithms. At the same time, ex-

perimentalists must convince themselves and the wider world that such machines

are not in principle unscalable, since we still do not know whether the universe

forbids the generation and processing of a computationally significant quantum

system. To that end, DiVincenzo formulated the following requirements for the

physical implementation of a quantum computer [67]:

1. A scalable physical system with well characterised qubits.

The Hamiltonian governing the qubit must be well understood and its cou-

pling to other quantum states well characterised such that it can be consid-

ered a genuine two level quantum system. If this is not the case leakage may

occur into other quantum states leading to decoherence and loss of quantum

information.

2. The ability to prepare the state of the qubits in an initial fiducial state.

Reliably preparing the qubits in a low entropy state (that is a pure state as

opposed to a maximally mixed state) is essential for reducing errors later in

the computation. For atom based architectures where qubits must be cooled

to their ground state this can be challenging.

3. Long decoherence times relative to the gate operation times.

Decoherence occurs when qubits interact with their environment, resulting in

loss of information and computational errors. Decoherence is the mechanism

by which classicality emerges, thus a quantum computer with high levels of

decoherence begins to resemble a classical machine. If however error lev-

els are below thresholds required for error correcting codes [68] quantum

computation can still be achieved.
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4. A universal set of quantum gates.

A universal gate set is a sufficient set of gates which can be combined together

to create any gate (see Section 7.2.2 for details). This requires identifying

some set of Hamiltonians {Ĥi} which can be applied for time ti to give rise

to a universal gate set {Ûi = exp[−iĤiti]}. These typically include single

qubit operations and two qubit operations, which must be performed quickly

and with high fidelity.

5. Qubit measurement capability.

Finally the qubit(s) must be measured. This requires coupling the state of

a qubit (such as the position of a photon) to the macroscopic state of a

detector, which can often lead to inefficiencies.

2.5.3 Architectures

Engineering qubits and circuitry which satisfy all of these constraints is recog-

nised as one of the most technologically demanding tasks yet undertaken. For

instance, qubits which exhibit strong interactions, such that two qubit gates are

feasible, tend to interact with the environment leading to decoherence and loss of

information

A variety of quantum systems have been proposed as suitable architectures for

a universal quantum computer. An ion trap quantum computer uses the energy

levels of electromagnetically trapped charged particles, achieving two body inter-

actions via the Coulomb interaction [69]. Advances in laser science and cooling

techniques have allowed the generation of entangled states with up to 15 qubits

[70] and high fidelity single qubit gates [71] — yet the prospects for scalability is

still an outstanding challenge [72].

Another promising platform is superconducting qubits, which uses the quan-

tised flux or charge around a superconducting circuit coupled to a Josephson junc-

tion to realise a two level quantum system [73]. These systems have demonstrated

high fidelity single qubit and two qubit gates [74] at the threshold for surface code
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error correction [75]. However, advances in material science and large scale fabri-

cation processes must still be made [76]. Other candidate qubits include optically

trapped neutral atoms [77], NMR [78] and solid state qubits such as quantum dots

and nitrogen vacancy centres [79].

We now move on to the main topic of this chapter, and introduce the platform

with which the entire thesis is concerned: single photons in linear optical circuits.

What we will see is that many of the challenges which plague other architectures

are circumvented with photons; they are quick, easy to manipulate, and possess low

decoherence properties. However this gain does not come without cost, and many

hurdles must be overcome to realise a universal linear optical quantum computer.

2.6 Photonic Qubits

The ease with which single photons can be manipulated, their low decoherence

properties and their light-speed propagation has put them at the heart of some of

the major advances in experimental quantum physics over the past half century.

For example, photons generated from atomic calcium cascades have been used to

test the foundations of quantum mechanics [6, 7], whilst spontaneous parametric

down-conversion (see Section 3.3) has been used to demonstrate the first teleporta-

tion protocols [80, 81]. More recently, photons have enabled the first commercially

available quantum technology: quantum cryptographic systems [82]. For a review

of quantum photonic technologies see references [9, 12].

Many of the properties of photons which enable quantum cryptographic pro-

tocols, are key to their potential as a viable platform for the more technologically

ambitious goal of a digital quantum computer. For example, the requirement for

a well defined two level system can be met by photons in a number of ways. Since

the time of Fresnel, Arago and Young in the early 1800’s it was understood that

light was a polarised wave that could be manipulated by birefringent materials

[83]. Remarkably, the physics that was understood then can be directly mapped

to the manipulation of single photonic qubits now.
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Figure 2.4: Photonic qubits. (a) Horizontal |H〉 and vertical |V 〉 polarisation states

represent logical {|0〉 , |1〉}. (b) Superpositions of these basis states can be represented

on the Poincaré sphere. (c,d) Both time bin and polarisation encoded qubits can be

encoded onto path qubits via a clocked switch (SW) and delay line, or a polarising

beamsplitter (PBS) respectively.

In the language of qubits we can consider the polarisation of a single photon

to be a two state quantum system with the horizontal and vertical polarisation

representing the logical basis set {|H〉 , |V 〉} = {|0〉 , |1〉}, as shown in Fig. 2.4(a),

and polarisation superpositions representing different bases

|D〉 =
1√
2

(|0〉+ |1〉); |A〉 =
1√
2

(|0〉 − |1〉); (2.25)

|R〉 =
1√
2

(|0〉+ i |1〉); |L〉 =
1√
2

(|0〉 − i |1〉), (2.26)

see Fig. 2.4(b). Polarisation states can be manipulated with birefringent materials,

known as wave-plates, which retard one component of the polarisation with respect

to the other thereby introducing a controllable phase shift between any orthogonal

polarisation states (see Langford [84]).

Many degrees of freedom exist for photonic qubits, such as polarisation, time-

bin or frequency encoding; but in this work we will be entirely concerned with path

degrees of freedom. We note however, that these can be interconverted, for example

using clocked active switching to convert between time-bin and path, or polarisa-

tion beamsplitters to convert between polarisation and path [see Fig. 2.4(c,d)].
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2.6.1 Mathematical Framework

States

The physics governing a particular encoding of choice is discussed in Chapter 3.

Here, we discuss the general picture for photons in optical modes, a mathematical

framework which is suitable for any encoding. We begin with the acceptance

that a photon is a quantised excitation of the electro-magnetic field [85] and use

the mathematical framework of creation â† and annihilation â operators acting

between the vacuum state |0〉 and the state of n photons |n〉, such that

â |0〉 = 0; â |n〉 =
√
n |n− 1〉 ; (2.27)

â† |n〉 =
√
n+ 1 |n+ 1〉 ; â†n |0〉 =

√
n! |n〉 . (2.28)

The Fock states form an orthonormal basis in Hn such that 〈i|j〉 = δi,j. This

approach can be generalised to multiple modes by considering an m-mode vacuum

state |0〉 = |01, 02 . . . 0m〉 such that

â†ni |0〉 =
√
n! |01 . . . ni . . . 0m〉 (2.29)

where |ni〉 represents n photons in the ith mode. Photons are bosons and therefore

obey Bose-Einstein commutation relations

[âi, âj] = [â†i , â
†
j] = 0; [â†i , âj] = δi,j1. (2.30)

An arbitrary single photon Fock state can be written as a superposition across

all modes

|ψ〉1 =
m∑

i=1

αiâ
†
i |0〉 =

m∑

i=1

αi |1i〉 , (2.31)

with
∑

i|αi|2= 1, such that |ψ〉1 is a vector in the m-dimensional Hilbert space Hm

spanned by the basis {|1i〉}mi=1. A general system of p-photons in m-modes can be

written as [86]

|ψ〉p =

|Dmp |∑

i∈Dmp

αi

m∏

j=1

â
†nij
j√
nij!
|0〉 =

|Dmp |∑

i∈Dmp

αi |i〉 (2.32)
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whereDm
p is the set of basis states {|p1, 02 . . . 0m〉 , |p− 11, 12 . . . 0m〉 . . . |01, 02 . . . pm〉}

with dimensionality |Dm
p |=

(
m+p−1

p

)
, and nij is the jth element (mode) of the ith

basis state of Dm
p . The state |ψ〉p can therefore be represented by a vector inH|Dmp |.

Introducing distinguishability among the p particles can increase the Hilbert space

up to mp dimensions, though such a state also becomes classically tractable and

not generally useful for quantum computation.

It is worth noting two alternatives notations for describing Fock states. We

have presented the photon number basis |n1〉 ⊗ |n2〉 . . . |nm〉 where each element in

the basis represents a mode, and the the entry ni is the number of photons in that

mode such that
∑

i ni = p. An equally valid, and often more compact notation

is to represent the state in the mode number basis |i1〉 ⊗ |i2〉 . . . |ip〉 where each

element represents the pth photon and the entry is the location (mode) ip of that

photon. As an example let us consider the p = 2,m = 3 case. In the photon

number basis

|n1〉 ⊗ |n2〉 ⊗ |n3〉 : {|200〉 , |110〉 , |101〉 , |020〉 , |011〉 , |002〉} (2.33)

and in the mode number basis

|i1〉 ⊗ |i2〉 : {|11〉 , |12〉 , |13〉 , |22〉 , |23〉 , |33〉}, (2.34)

where we have enforced ordering from left to right to account for symmetrisation.

Both notations will be used in this thesis, the choice of which will be clear from

the context.

Transformations

Typically, we are interested in how optical elements transform these Fock states.

Ideal linear optical operations are described by m×m unitary operators Û ∈ Cm×m,

and transform photon states in a linear manner preserving photon number. For

example a single photon injected into mode j transforms

â†j →
m∑

i=1

ui,j â
†
i (2.35)
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where ui,j represents the ith row and jth column element of Û , hence
∑

i|ui,j|2=
1. It is often conceptually clearer to think of these transformations as matrix

operations on vectors. Moving to the photon number basis

|1j〉 Û−→ Û |1j〉 = (2.36)



u1,1 u1,2 · · · u1,m
...

...
. . .

...

uj,1 uj,2 · · · uj,m
...

...
. . .

...

um,1 um,2 · · · um,m







0
...

1
...

0




=




u1,j
...

uj,j
...

um,j




, (2.37)

in other words, a simple basis transformation.

Throughout this thesis the most interesting phenomena will arise due to mul-

tiple photons. To understand this transformation we can consider the operation of

photons injected into modes j and k. By linearity

â†j â
†
l →

(
m∑

i=1

ui,j â
†
i

)(
m∑

k=1

uk,l â
†
k

)
(2.38)

which can be thought of as the tensor product between the vectors described by

jth and kth columns. In the matrix multiplication picture, a more convenient way

to describe this m × m transformation Û is via a homomorphic map ϕ, which

directly transforms the multi-photon mode basis via a |Dm
p |×|Dm

p | transformation

ϕ(Û) [22]. This operation can be constructed via the Kronecker product formalism,

an example is given in Section 2.6.6.

2.6.2 Building Blocks of Linear Optics

Given the description of states and transformations above let us now consider the

building blocks of linear optical circuits. The first operation we consider is a phase

shifter [Fig. 2.5(a)], which changes the phase of the electromagnetic field by φ,

such that

â†
PS−→ eiφâ†. (2.39)
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The second operation is a lossless beamsplitter of reflectivity η [Fig. 2.5(b)]. Clas-

sically this is a two mode operation which splits the incident power into the two

output modes with ratio η : 1−η; quantum mechanically this operation coherently

and unitarily splits the probability amplitudes of the incoming fields across two

modes â†1, â
†
2 such that

â†1
BS−→ √η â†1 +

√
1− η â†2

â†2
BS−→
√

1− η â†1 −
√
η â†2. (2.40)

It will be convenient to describe this by a 2× 2 matrix ÛBS

ÛBS(η) =



√
η

√
1− η

√
1− η −√η


 (2.41)

where the minus phase shift is necessary to maintain unitarity (see Section 2.2.5)

and thus conserving energy [87]. Finally we define an ‘integrated’ beamsplitter,

the directional coupler [Fig. 2.5(c)], which acts symmetrically such that

â†1
DC−→ √η â†1 + i

√
1− η â†2 (2.42)

â†2
DC−→ i

√
1− η â†1

√
η â†2, (2.43)

or in matrix form

ÛDC(η) =



√
η i

√
1− η

i
√

1− η √
η


 . (2.44)

All experiments presented in this thesis will use ÛDC, but ÛBS has pedagogical

merit and is often used for simplicity when developing and sketching LO circuitry.

2.6.3 Mach-Zehnder interferometer

From these building blocks we can form larger circuits, such as the canonical

two-mode Mach-Zehnder interferometer (MZI), which is constructed via a phase

shifter sandwiched between two η = 1/2 beamsplitters [Fig. 2.5(d)]. Pre-empting

the qubit analysis in the forthcoming sections it will be convenient to describe this

two mode system via the basis {|0〉 , |1〉}. Let us consider how these building blocks
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ÛBS(1/2) =
1p
2


1 1
1 �1

�
P̂ (�) =


ei�/2 0

1 0

�

ÛDC(1/2) =
1p
2


1 i
i 1

�

�

�

ÛMZI(�) = exp[i(�+ ⇡)/2]

sin(�/2) cos(�/2)
cos(�/2) � sin(�/2)

�

(a) (b)

(c) (d)

Figure 2.5: The building blocks of linear optics. Circuit symbols and matrix

description for (a) a phase shifter, (b) a beamsplitter, (c) a directional coupler, and (d)

a Mach-Zehnder interferometer.

transform vectors on the Bloch sphere: following the the approach of Matthews

et al. [15] a relative phase shift φ between two optical modes can be modelled via

P̂ (φ) = exp[iφẐ/2], that is a rotation around the ẑ-axis of the Bloch sphere

P̂ (φ) = eiφ/2


e

iφ/2 0

0 e−iφ/2


 . (2.45)

Note, we keep track of the global phase which plays an important role later. Now

consider the directional coupler with η = 1/2

ÛDC(1/2) =
1√
2


1 i

i 1


 , (2.46)

to understand its operation on the Bloch sphere we can see how it transform basis

states. Simple matrix multiplication shows

ÛDC |0〉 = |+i〉 ; ÛDC |1〉 = ei
π
2 |−i〉 ; (2.47)

ÛDC |+〉 = ei
π
4 |+〉 ; ÛDC |−〉 = e−i

π
4 |−〉 ; (2.48)

ÛDC |+i〉 = ei
π
2 |1〉 ; ÛDC |−i〉 = |0〉 . (2.49)
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So up to a global phase ÛDC is a 90
◦

clockwise rotation around the x̂-axis of the

Bloch sphere.

We can combine these operations to build an MZI

ÛMZI(φ) = ÛDCP̂ (φ)ÛDC (2.50)

= exp[i(φ+ π)/2]


sin(φ/2) cos(φ/2)

cos(φ/2) − sin(φ/2)


 . (2.51)

Note, up to a global phase ÛMZI resembles the variable reflectivity beamsplitter

in (2.41) with η = sin2(φ/2). Hence, active control of a phase shift is sufficient

to realise an arbitrarily reconfigurable beamsplitter, a fact we use in the design of

the fully reconfigurable linear optical processing unit (LPU) in Chapter 6.

Injecting bright light of intensity I into the first mode and measuring the

intensity of light in the output modes, gives I0 = I sin2(φ/2) and I1 = I cos2(φ/2).

This sinusoidal function is referred to as a classical interference fringe and will be

used in Chapter 6 to characterise and calibrate the LPU.

2.6.4 Arbitrary Operations

Let us now examine how to use these building blocks to prepare arbitrary single

qubit states, make single qubit measurements and perform arbitrary operations.

Recall from Section 2.3.1, arbitrary single qubit states can be written as |ψ〉 =

sin(φ/2) |0〉 + exp(iθ) cos(φ/2) |1〉. Ignoring the global phase, a single photon in-

jected into the first mode of an MZI can be written as

ÛMZI(φ) |0〉 =


sin(φ/2) cos(φ/2)

cos(φ/2) − sin(φ/2)




1

0


 =


sin(φ/2)

cos(φ/2)


 . (2.52)

Therefore adding a phase shift θ to mode 2 after the MZI is sufficient to prepare

any single qubit state. The task of state preparation is one of finding an operator

Â such that |0〉 Â−→ |ψ〉, hence Â = |ψ〉 〈0|+ |ψ⊥〉 〈1| where 〈ψ|ψ⊥〉 = 0.

The task of measurement is precisely the reverse. Taking any single qubit state,

and deterministically projecting it onto |0〉. In other words an observable which
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asks “are you the state |ψ〉 or |ψ⊥〉?” Placing detectors directly in the modes

measures in the basis {|0〉 , |1〉} therefore the relevant measurement operator is

Â† = |0〉 〈ψ| + |1〉 〈ψ⊥|. Hence a phase shifter followed by a MZI is sufficient to

measure in any single qubit basis.

We can generate any two dimensional operation by first noting the Euler de-

composition for the generation of any element of SU(2) [88]

Û = Rẑ(α)Rx̂(β)Rẑ(γ) (2.53)

where

Rn̂(θ) ≡ exp(iθ n̂.~σ/2) (2.54)

= cos(θ/2)Î + sin(θ/2)(nxX̂ + nyŶ + nzẐ). (2.55)

By this definition ÛMZI(φ) is equivalent to Rx̂(θ) up to input and output phases

P̂ (−π/2):

Rx̂(φ) =


 cos(φ/2) i sin(φ/2)

i sin(φ/2) cos(φ/2)


 (2.56)

P̂ (−π/2)ÛMZI(φ+ π)P̂ (−π/2) =


1 0

0 i




cos(φ/2) sin(φ/2)

sin(φ/2) − cos(φ/2)




1 0

0 i


 (2.57)

=


 cos(φ/2) i sin(φ/2)

i sin(φ/2) cos(φ/2)


 (2.58)

Recall, P̂ (θ) = exp(iθẐ/2), therefore an MZI sandwiched between two phase

shifters is sufficient to realise any single qubit operation

P̂ (α′)ÛMZI(β
′)P̂ (γ′) = Rẑ(α)Rx̂(β)Rẑ(γ) (2.59)

with transformations α′ = α − π/2, β′ = β + π, γ′ = γ − π/2. In Table 2.2 we

give phase shifter settings for Pauli preparation and measurements, which will be

used for quantum state tomography in Chapter 7.
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State φ θ Observable θ φ

|0〉 π 0 σz 0 π

|1〉 0 0 σx 0 π
2

|+〉 π
2

0 σy
π
2

3π
2

|−〉 π
2

π

|+i〉 π
2

3π
2

|−i〉 π
2

π
2

Table 2.2: Pauli preparation and measurement settings. On-chip phase

shifter settings to prepare Pauli eigenstates and measure Pauli observables. Here,

the global phase has been omitted, but should be accounted for when chaining

multiple preparations and measurements together.

2.6.5 Two Qubit Gates

A universal gate set for a quantum computer requires a conditional gate, such as

the two-qubit controlled-NOT gate (CNOT) introduced in Section 2.3.3. The

CNOT flips the state of the target qubit |0T 〉 ↔ |1T 〉 if the control qubit is in the

logical |1C〉 state, and does nothing otherwise.

To realise this for photonic qubits in linear optics, consider constructing a

circuit over four photonic modes (dual rail encoding); two modes for the control,

and two modes for the target, such that the mode number basis transforms to the

computational basis:

{|13〉 , |14〉 , |23〉 , |24〉} → {|0C0T 〉 , |0C1T 〉 , |1C0T 〉 , |1C1T 〉}. (2.60)

The CNOT can be implemented with an MZI over the target rails [see Fig. 2.6(a)]

and a cross nonlinearity between modes |1C〉 and |0T 〉, such that a photon in mode

|1C〉 applies a phase shift φ = π (and the MZI then acts as a swap), whilst the

vacuum in this mode results in no phase shift, φ = 0 (and the MZI then acts as

identity).

34



2.6. Photonic Qubits

|0Ci

|1Ci

|0T i

|1T i

�(3)

|0Ci

|1Ci

|0T i

|1T i

CZ
(a)

(b)

(c)

Figure 2.6: Quantum interference powered two-qubit gates (a) A two-qubit

photonic CNOT gate can be realised with a χ(3) nonlinearity which applies a phase to

the balanced interferometer conditional on |1C〉. (b) The four possible outcomes in a

Hong-Ou-Mandel interference experiment. A photon reflecting off the dotted face ac-

quires a negative phase shift (shown in blue), and either reflecting off the solid face or

transmitting, acquires a positive phase (shown in red). When the photons are indistin-

guishable, the central two terms destructively interfere and the photons bunch. (c) A

quantum interference powered two-qubit CNOT gate can be constructed out out a CZ

gate (beamsplitters in dashed box are η = 1/3) and two η = 1/2 beamsplitters.

In the all-photonic setting this phase shift requires an optical nonlinearity8: a

material whose refractive index is a function of the intensity of light propagating

through it. Such optical nonlinearities are incredibly weak as a strong response

requires the electromagnetic field of incident light to be comparable to that of the

nucleus of atoms within the material (see Section 3.2.2 for a more in-depth discus-

sion). As a result the useful application of such nonlinearities has been limited to

high power classical optics such as laser operation. The phase shift due to a single

photon in a photonic crystal fibre has been reported by Matsuda et al. [90], but a

8Other approaches to inducing single photon nonlinearities exist such as light-matter inter-

actions or engineering photonic structures, see Chang et al. [89] for a recent and comprehensive

review.
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π-phase shift would require O(105km) of fibre. Whilst the ultimate feasibility of

such a system is an open question [91], it would certainly be a significant challenge.

Up until 2001, this was the status of linear optics. It was seen as a convenient

platform for quantum communication or fundamental tests of quantum mechanics,

but there were serious doubts as a platform for universal quantum computation.

This all changed when Knill, Laflamme and Milburn (KLM) showed that by using

the nonlinearity induced by single photon detection, an all optical quantum com-

puter was possible [10]. We leave the details of the scheme to Chapter 7, but note

here that a key ingredient is quantum interference.

2.6.6 The HOM-trinity

At the heart of their proposal is the two photon interference phenomena, the Hong-

Ou-Mangel (HOM) effect [92]. In the following we present three mathematically

equivalent, yet conceptually distinct approaches to deriving this effect. Each ap-

proach will provide its own insight into a phenomena which is at the core of the

experiments presented later in this thesis.

The HOM effect asks:

What happens when you put two completely indistinguishable photons

incident on a 50/50 beamsplitter?

Here ‘completely indistinguishable’ means indistinguishable in all degrees of free-

dom; polarisation, spatio-temporal structure, frequency etc. As we have seen from

Section 2.2.4, because this is a quantum system we must sum the possible out-

comes at the probability amplitude level. Let us first examine this through the

language of creation operators.
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Creation Operators

Consider the transformation relations for the beamsplitter9 in (2.40) with η = 1/2.

â†1
BS−→ 1√

2
(â†1 + â†2)

â†2
BS−→ 1√

2
(â†1 − â†2). (2.61)

Injecting a photon into modes 1 and 2 yields

â†1â
†
2

BS−→1

2
(â†1 + â†2)(â

†
1 − â†2) (2.62)

=
1

2
(â†21 − â†1â†2 + â†2â

†
1 − â†22 ). (2.63)

Examining (2.63) we see precisely what ‘summing at the probability amplitude

level’ means. The first term and the last term represent both photons in the same

mode, that is one photon transmitting and reflecting through the beamsplitter

[see Fig. 2.6(b)]. The middle terms represent one photon per output mode, that is

both photons reflecting or transmitting. From (2.30), as these events are indistin-

guishable (i.e. there is no observable which will tell us which photon transmitted),

they commute [â†1, â
†
2] = 0 and hence cancel. Therefore

â†1â
†
2 |0〉

BS−→1

2
(â†21 − â†22 ) |0〉 (2.64)

=
1√
2

(|20〉+ |02〉) . (2.65)

We arrive at a uniquely quantum mechanical effect: if the photons are indistin-

guishable they seem to bunch together, and you never see one photon per mode.

Let us now examine this through the description of the unitary matrix.

Unitary Description

The unitary describing this transformation is given in (2.41) as

ÛBS =
1√
2


1 1

1 −1


 . (2.66)

9We consider the beamsplitter for simplicity, but these results can be extended to the direc-

tional coupler without loss of generality.
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Using the Kronecker product formalism we can expand this into multi-photon

Hilbert space

Û⊗2BS = ÛBS ⊗ ÛBS =
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



, (2.67)

whose basis in mode number is {|1112〉 , |1121〉 , |2112〉 , |2122〉}. Following the ap-

proach of Popescu [93], inputting a photon in each mode requires symmetrising the

initial state such that |ψ〉 = 1/
√

2(|1121〉 + |2112〉). The transformation therefore

becomes

Û⊗2BS |ψ〉 =
1

2
√

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







0

1

1

0




=
1√
2




1

0

0

−1



, (2.68)

recovering the HOM effect. This symmetrisation of the initial state can be thought

of as the ‘source’ of entanglement in the HOM-state (2.65). We now present a third

approach which will later provide an insight into the computational complexity of

linear optics.

Permanents

If a detector is placed in each mode we can calculate the probability of both de-

tectors firing via a matrix function known as the permanent [86]. The permanent

appears mathematically similar to the determinant, but with the important dif-

ference that all terms are positively summed. For an n× n square matrix A it is

given by

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i) (2.69)
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where the sum runs over all elements σ of the symmetric subgroup Sn, that is the

n! permutations of (1, 2 . . . n). For example if

A =


a1,1 a1,2

a2,1 a2,2


 (2.70)

perm(A) = a1,1a2,2 + a1,2a2,1, (2.71)

and so on for larger matrices. We discuss the computational complexity of this

function in detail in Chapter 5, but for the moment note that the probability for

a coincidence (two-fold) detection event is given by

P(2-fold) = |perm(ÛBS)|2 (2.72)

= |perm


 1√

2


1 1

1 −1




 |2 (2.73)

= | 1√
2

(1×−1 + 1× 1)|2= 0 (2.74)

thus recovering the HOM effect. This matrix function approach is simpler from

a computational perspective when coding large scale simulations of multi-photon

interference. This technique can also be generalised to p-photons in an m-mode

linear optical circuit. To calculate the probability Pi,o for a given transition from

input state |ψi〉 = |ni1, ni2 . . . nim〉 to output state |ψo〉 = |no1, no2 . . . nom〉 we evaluate

Pi,o = |〈ψo|Û |ψi〉 |2 (2.75)

=
|perm(Λ)|2∏
j n

i
j!
∏

j n
o
j !
, (2.76)

where Λ is a p × p submatrix of Û , with entries given by the non-zero entries of

|ψi〉 and |ψo〉. i.e. ni1 copies of the first column, ni2 copies of the second column etc.

and no1 copies of the first row, no2 of the second row etc. For concreteness consider

the m = 3 and p = 2 case with |ψi〉 = |101〉 and |ψo〉 = |110〉,

Û =




u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3


 ; hence Λ =


u1,1 u1,3

u2,1 u2,3


 . (2.77)
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We further note (2.75) refers to the case of completely indistinguishable bosons.

If however the bosons are distinguishable the numerator becomes perm(|Λ|2) and

the denominator runs over
∏

j n
o
j ! only. Methods exist to treat partially distin-

guishable bosons with immanants [94] or via multidimensional permanents [95]. If

the particle are fermions then the determinant |det(Λ)|2 is used.

2.6.7 HOM Powered Two Qubit Gate

Let us now use this interference effect to build an all photonic two-qubit CZ gate.

Following the formulations of Ralph et al. [96] and Hofmann and Takeuchi [97]

we consider the six-mode circuit shown in the dashed box of Fig. 2.6(c), con-

sisting of three η = 1/3 reflectivity beamsplitters, with two dual rail encoded

qubits and two ancilla modes. We constrain this circuit to post-selected opera-

tion; that is we discard events which are outside of our computational subspace

{|0C0T 〉 , |0C1T 〉 , |1C0T 〉 , |1C1T 〉} ≡ {|24〉 , |25〉 , |34〉 , |35〉}.
From visual inspection we can see |0C0T 〉 and |0C1T 〉, with post-selection, stay

as they are up to an overall probability (we discard events such as |0C , 1C〉). The

state |1C , 1T 〉, receives a π-phase shift from the reflection of the control photon,

hence |1C , 1T 〉 → − |1C , 1T 〉. Finally we can consider the state |1C , 0T 〉 via the

evolution of creation operators ĉ†1t̂
†
0 through ÛBS(1/3)

ĉ†1 t̂
†
0

ÛBS(1/3)−−−−−→
(
− 1√

3
ĉ†1 +

√
2

3
t̂†0

)(√
2

3
ĉ†1 +

1√
3
t̂†0

)
(2.78)

=−
√

2

3
ĉ†21 −

1

3
ĉ†1t̂
†
0 +

2

3
t̂†0ĉ
†
1 +

√
2

3
t̂†20 . (2.79)

Commuting terms and applying post selection yields ĉ†1t̂
†
0/3, that is the state |1C0T 〉

with probability p = 1/9, thus realising the full CZ logic.

The qubit basis and the photon number basis are not isomorphic. The Hilbert

space dimensionality of two qubits is D = 4, whilst the dimensionality of two

photons in four modes is |D4
2|= 10. In the ideal case, quantum interference sets

a zero probability for an outcome in some of these extra dimensions, while the

successful measurement outcome removes the other extra dimensions. In Chapter
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7 we use this measurement induced nonlinearity to construct prototype two qubit

gates, that are scalable for LOQC with the addition of fast feedforward capabilities.

2.7 Concluding Remarks

We have seen a variety of the theoretical constructs which underpin linear optical

quantum computing — drawing on elements of mathematics, computer science and

physics. So far our discussion has been architecture independent, but a quantum

computer is something that must be built in the lab. In the following chapter we

therefore introduce the photonic hardware which will be used for linear optical

quantum information processing throughout the course of this thesis.
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What goes on inside is just too fast and huge and all intercon-

nected for words to do more than barely sketch the outlines of at

most one tiny little part of it at any given instant.

David Foster Wallace

3
Photonic Processing Hardware

Statement of work

The multi-photon source was built, characterised and maintained by myself. Waveg-

uide devices were designed and fabricated externally by collaborators and commer-

cial organisations (detailed within), however characterisation, mounting and loss

measurements were performed by myself. I built the optical coupling rig for passive

waveguide devices, and packaged — in conjunction with C. Harrold and G. Mar-

shall — the active silicon nitride device. Linear optical processor control electronics

were designed by J. W. Silverstone, and built by myself. The time correlated single

photon counting system was designed and built by P. J. Shadbolt.
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3.1 Introduction

Here we present the physical hardware which will enable the photonic systems

throughout this thesis. Whilst these systems are demonstrated for many different

applications, they share the same basic stages: multi-photon generation; multi-

photon manipulation via passive or active linear optical circuitry; and a multi-

photon detection stage. Together we term them a ‘linear optical processing unit’

(LPU) — in analog to classical CPU. In our presentation of these basic stages, we

include discussions of the core physics underpinning their operation.

In Section 3.2 we discuss single photon sources and the principles govern-

ing spontaneous parametric down-conversion; and in Section 3.3 present a multi-

photon source based upon down-conversion. We present the theory behind guided

propagation of light in Section 3.4 then describe the various material platforms

that will be used, along with practical consideration of interfacing for use within

the LPU, in Section 3.5. Finally, in Section 3.6, we describe the time-correlated

single photon counting system used throughout this thesis.

3.2 Single Photon Sources

Investigation into the quantised nature of light has transformed modern physics.

In the late 19th, and early 20th century, anomalous results such as the inability of

Maxwells equations to account for the photoelectric effect and blackbody radiation,

began amounting. This crisis led to a Kuhnian paradigm shift which culminated

in 1905 with Einstein postulating that light itself was quantised :

“According to this picture, the energy of a light wave emitted from a

point source is not spread continuously over ever larger volumes, but

consists of a finite number of energy quanta that are spatially localised

at points of space . . . Subsequently, I wish to explain the reasoning and

supporting evidence that led me to this picture of light, in the hope that
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some researchers may find it useful for their experiments.”

Albert Einstein [4]

From Compton’s initial observation of the momentum of a photon [98], to

the use of photons in biological imaging [99]; the photon has become ubiquitous is

modern science both as an experimental and conceptual tool. More recent research

into the generation of photons has been driven by the commercial applications of

quantum cryptography [82]. Quantum key distribution systems are now available

from companies such as ID Quantique [100] and MagiQ [101], as are off-the-shelf

single photon sources [102].

From the perspective of linear optical quantum computing (LOQC) let us recall

Section 2.5.2 and DiVincenzo’s second critereon for the physical implementation

of a quantum computer:

“The ability to prepare the state of the qubits in an initial fiducial

state.” [67]

Hence, a LOQC must reliably produce on-demand single photons. For our purpose

an ideal photon source is one that produces single photons on-demand with unit

probability, and multiple photons with zero probability. Multi-qubit gates place a

further constraint that these photons must be completely indistinguishable in all

degrees of freedom.

Several promising platforms exist for the generation of single photon states [103,

104]. Single emitters relying on the externally controlled excitation and subsequent

relaxation of a two-level quantum system are particularly appealing due to their ‘in

principle’ deterministic operation. Such systems include nitrogen-vacancy colour

centres [105], single optically trapped neutral atoms [106], single trapped ions

[107], single molecules [108, 109] and semi-conductor quantum dots [110]. The

major outstanding goal for all these platforms is the high efficiency interfacing

with optical networks, and the creation of simultaneously addressable, identical,

multiple emitters. Due to the nascency of these emitter based technologies we

opt for a platform which whilst probabilistic, allows for the reliable generation
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of high fidelity, high intensity, multi-photon states, via the process spontaneous

parametric down-conversion.

3.2.1 Spontaneous Parametric Down-Conversion

Spontaneous parametric down-conversion (SPDC) is a process whereby a pump

photon incident on a χ(2) nonlinear material probabilistically splits into two lower

energy daughter photons, conserving energy and momentum. The weak nonlinear-

ities of commonly available materials means this probability is small O(10−11)∗.

However, advances in laser science of the past half century means the absolute rate

of photon generation can be made relatively high by pumping the material with a

bright, coherent laser beam.

SPDC has been the work horse of quantum optics. Since the first demonstration

of correlated photon pairs [112], SPDC has been instrumental in demonstrating

quantum interference effects [92, 113, 114], violations of local realism [115–117],

proof of principle quantum information processing tasks such as two-qubit quan-

tum gates [118], quantum algorithms [119] and quantum simulations [120], and

quantum metrology [121–123]. Further advances in ultra bright entangled sources

[124] have enabled quantum teleportation [80], quantum communication [125],

quantum cryptography [126–128], and the generation of eight-photon entangled

states [129, 130].

More recently, nonlinear effects in waveguide devices such as silicon [20], silica

[131], PPLN [132] and PPKTP [133] have demonstrated the feasibility of util-

ising high fidelity integrated photon sources as a scalable platform for quantum

information processing. Moreover, when coupled with fast, low loss switching;

such devices can be multiplexed [134] to provide a route towards an all-optical

near-deterministic photon source [135–138].

∗In Kwiat et al. [111] they estimate a pair photon rate of ∼ 60, 000 s−1mW−1 of incident

power. At 351nm, a single photon has E = h̄c/λ = 10−19J of energy, hence 1mW of laser power

contains 10−3/10−19 = 1016 photons. This therefore gives the probability of creation per photon

as 105/1016 = 10−11.
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(a) (b)

none

neHqL
no

q

Z

Figure 3.1: Birefringence. (a) Extraordinary light with wave vector ~k is polarised

in the principle plane of a birefringent uniaxial crystal, subtending an θ with the optic

axis Z. The principle plane is defined as the plane containing ~k and Z. (b) Refractive

index experienced by an e-beam at an angle θ to optic axis for a negative uniaxial crystal

(no > ne).

3.2.2 Principles of Down-Conversion

The following discussion of SPDC draws on Dmitriev et al. [139] and the PhD

thesis of N. K. Langford [84].

Birefringence

Birefringence is a property of materials whose refractive index n is dependent on

the polarisation of incident light. The conceptually simplest kind of birefringent

material is a uniaxial crystal shown in Fig. 3.1(a), which has a single axis of

symmetry called the optic axis (Z). The principle plane is defined as the plane

containing the optic axis and the wave vector ~k of the light, where

|~k|= 2πn

λ
, (3.1)

the wavelength of incident light is λ, and the direction is given by the direction of

propagation of the light. A beam whose polarisation (i.e. plane in which the elec-
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tric field oscillates) is perpendicular to the principle plane is termed the ordinary

beam (o-beam), and a beam polarised in the principle plane is termed the extraor-

dinary beam (e-beam). The refractive index of the o-beam no is independent of

the direction of propagation, whilst the refractive index of the e-beam ne(θ) de-

pends on the direction. Specifically, if the e-beam is propagating in the direction2

perpendicular to Z it experiences a refractive index ne, and parallel it experiences

no. At a general angle θ it sees

ne(θ) = no

√
1 + tan2 θ

1 + (no/ne)2 tan2 θ
. (3.2)

If no > ne the crystal is described as negative (e.g. β-Barium borate used for

second harmonic generation in Section 3.3), if no < ne it is positive (e.g. quartz

wave-plates). The quantity ne(θ) can therefore be represented by an ellipsoid with

axes ne and no, Fig. 3.1(b).

Finally, we note that crystals are dispersive so the refractive index depends on

wavelength according to the Sellmeier equations

n(λ) =

√
A+

B

λ2 − C −Dλ
2, (3.3)

where A,B,C,D are empirically derived quantities. In the case of uniaxial crystals

there will be two equations governing both the o- and e-beams.

Nonlinear optics

The displacement field D describes the effect of an electromagnetic field in a di-

electric material, and is related to the electric field E and the polarisation density

of the material P via

D = ε0E + P, (3.4)

where ε0 is the permittivity of free space. When an electric field is applied to

a dielectric, positive and negative bound charges can slightly separate creating a

2There is potential for confusion between the terminology ‘direction of propagation’ and

‘direction of polarisation’. We consider the former, defined as the direction of ~k.
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dipole moment whose field is described by the polarisation density. The overall

field must therefore be corrected for and the displacement in (3.4) accounts for

this.

This correction can be described with a single term by introducing the electrical

susceptibility χe which for linear materials relates the polarisation and electric field

via P = ε0χeE. Rewriting (3.4) as

D = ε0(1 + χe)E, (3.5)

gives the displacement solely in terms of electric field. It is convenient to introduce

the relative permittivity εr = 1 + χe so that (3.5) becomes

D = ε0εrE. (3.6)

The relative permittivity can directly be linked to the refractive index by n =
√
εrµr, where µr is the relative permeability which for non-magnetic materials is

µr = 1. In this case the refractive index is given by n =
√
εr and is therefore a

measure of how easily dipole moments are induced. If εr is large, the dipoles exert

a greater retarding force on the incoming electromagnetic field, effectively slowing

the phase velocity of the light v = c/n (where c is the speed of light in vacuum),

thus giving us what we term a ‘large’ refractive index. In Section 3.4.3 we explore

this in more detail to account for the thermo-optic effect and dispersion.

From (3.6) we see the displacement field is linear in the electric field, hence the

origin of the term linear optics. For nonlinear materials the displacement field

becomes

D = ε0
[
(1 + χ(1))E + χ(2)E2 + χ(3)E3 + · · ·

]
, (3.7)

where χ(2), χ(3) . . . represent higher order electric susceptibility terms character-

ising the nonlinear response of the material. Usually materials are only weakly

nonlinear χ(1) � χ(2) � χ(3) . . . , and in the work presented here we consider only

crystals with χ(2) nonlinearity.

From our argument relating refractive index and electric susceptibility, this

nonlinear dependence means the refractive index of a material can be a function
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of the intensity of the incident field. Light can control light. In χ(2) materials,

propagation of two monochromatic beams with frequencies ω1, ω2 gives rise to new

light waves with new frequencies ω3,4 = ω1 ± ω2. In the following we consider

two special cases whereby ω1 = ω2: second harmonic generation (SHG) where two

photons create a higher frequency photon, and the reverse process, SPDC, where

a single photon splits to two lower energy photons.

Phase Matching

First we examine the conceptually simpler SHG process — partly for pedagogic

purposes, but partly as it plays the role of the ‘up-convertor’ in the multi-photon

source in Section 3.3 — and then we extend this analysis to SPDC.

Typically, nonlinear effects occur when phase matching conditions are satisfied

ω3 = ω2 + ω1 (3.8)

~k3 = ~k2 + ~k1. (3.9)

This is equivalent to saying that energy (E = h̄ω) and momentum (~p = h̄~k) is

conserved. In the special case of collinear SHG we define k1 and k3 to be the

input and output beams respectively [see Fig. 3.2(a)], and the phase matching

conditions become ω3 = 2ω1 and k3 = 2k1. In Type I phase matching a new beam

is generated from two beams of the same polarisation, whilst in Type II phase

matching a new beam is generated from two beams of orthogonal polarisation. All

experiments presented in this thesis rely on Type 1 phase matching, and for SHG

we are interested in two e-beams generating an o-beam (ee→ o).

Recall from (3.2) that the refractive index seen by the e-beam ne(θ), is a

function of the direction of propagation with respect to the optic axis. From

(3.1), ~k depends on refractive index, therefore the wave vector of the e-beam ~ke(θ)

depends on the angle made with the optic axis.

The aim is to find the phase matching angle θpm such that

~ke1(θpm) + ~ke2(θpm) = ~ko3, (3.10)
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Figure 3.2: Type I SHG and SPDC phase matching. (a) Collinear second har-

monic generation of ee→ o light with in-coming and outgoing wave vectors shown. Inset,

phase matching requires conservation of momentum and energy, and can be visualised

as finding the intersection of the ellipse describing the wave vector 2~ke1(θ) and ~ko3. (b)

Non-collinear e→ oo spontaneous parametric down-conversion.

which in the case of collinear SHG simplifies to 2ke1(θpm) = ko3. This can be

visualised as finding the intersection between the circle traced by ko3 and the ellipse

traced by 2ke1(θpm), see Fig. 3.2(a) inset. Experimentally, crystals are usually pre-

cut for a known θpm, such that only fine tuning is needed to optimise the conversion

efficiency. In the lab, when converting from 800 nm→ 400 nm this is usually done

by aligning the input polarisation in the principle plane, then varying θ till an

ethereal blue ‘up-converted’ glow is observed. A polarisation analyser (polarising

beamsplitter and photodiode) after the SHG can then be used to fine tune θ and

the principle axis orientation so as to maximise the intensity of o polarisation.

Let us now consider the reverse SPDC process, whereby a single ‘pump’ photon

splits into two lower energy ‘daughter’ photons, Fig. 3.2(b). If the phase match-

ing conditions are carefully met (as in (3.8) and (3.9) with ω3, ~k3 → ωp, ~kp) the

daughter photons should be completely indistinguishable. The subtlety in phase

matching SPDC arises when we impose noncollinear generation, so daughter pho-
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tons are generated at an ‘opening angle’ to the pump, allowing unwanted laser

light to be avoided when collecting single photons. Phase matching conditions

must therefore consider perpendicular ~k components.

Momentum conservation from (3.9) gives ~kp = ~k1 + ~k2. Breaking this in to

components parallel and perpendicular to the pump gives

kp = k1 cos θ1 + k2 cos θ2 (3.11)

0 = k1 sin θ1 + k2 sin θ2 (3.12)

where θ1, θ2 are the opening angles of the daughter photons with respect to the

pump beam. Note, these conditions are invariant to rotation about the pump,

therefore photons are emitted either sides of a cone. In the case where e → oo

only the pump beam depends on θ and it can be shown [84] that

cos θ1 =
k2p(θ)− k22 + k21

2k1kp(θ)
, (3.13)

which given desired frequencies and the optic axis angle θ, can be solved to find

the opening angle of the emitted photons θ1. Further, dispersion effects must be

accounted for using the Sellmeier equations (3.3) and a correction applied due to

the refraction of light between the crystal air boundary. Typical opening angles

θop = θ1 + θ2 ≈ 6
◦
, with θ1 = θ2.

The SPCD process described above occurs in uniaxial crystals such as β-Barium

borate (BBO), however the source we present in Section 3.3 uses a relatively new

biaxial crystal BiB3O6 (BiBO) with a much higher nonlinearity than that of BBO

(2–3 times) [140]. Biaxial crystals have two optic axes, making a single principle

plane undefined and the phase matching conditions significantly more complex

with three Sellmeir equations {nx, ny, nz} — see reference [139] for a thorough

discussion. In practice this does not pose a problem as crystals are cut for a

desired wavelength, and photons are emitted at a known opening angle. Once

photons are found fine tuning of the phase matching angles can be done in situ.
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The Quantum Mechanical Picture

In the quantum mechanical picture of creation and annihilation operators (see

Section 2.6.1) acting on the pump mode â†p and daughter modes â†1,2, SPDC can

be described by the interaction Hamiltonian

Ĥ = gâ†1â
†
2ap + g∗a1a2â

†
p (3.14)

where g ∝ χ(2) is a coupling constant and the second term maintains Hermiticity

(physically interpreted as the reverse SHG process).

Typically pump photons are supplied by a bright laser in the form of a coherent

state, so we can write the initial state at t = 0 as |ψin(0)〉 = |0〉1 |0〉2 |α〉p. Follow-

ing the approach of Ou [141], since the pump field is approximately classical the

Hamiltonian can be rewritten as

Ĥ = iξâ†1â
†
2 + iξ∗a1a2 (3.15)

where the properties of the pump and g are expressed in ξ. Evolving this Hamil-

tonian via the unitary operator Û(t) = exp[−iĤt] for time t on the vacuum modes

|0102〉 yields

|ΨDC〉 = Û |0102〉 (3.16)

= exp[−i
(
iξâ†1â

†
2 + iξ∗a1a2

)
] |0102〉 (3.17)

≈
∞∑

j=0

γj

j!
â†j1 â

†j
2 |0102〉 (3.18)

=
∞∑

j=0

γj |j1j2〉 (3.19)

= |0102〉+ γ |1112〉+ γ2 |2122〉+ · · · , (3.20)

where γ = ξt captures the crystal thickness (interaction time), pump properties

and nonlinear coupling constant. Between (3.17) and (3.18) we assume that the

average photon number of the pump |α|2� 1, thus the pump does not ‘lose’

photons â†â |α〉 ≈ ââ† |α〉 ≈ |α|2|α〉, and we assume the low gain regime |ξ|� 1.
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Some remarks: when the pump power is weak |γ| is small and |γ|� |γ|2� |γ|3,
hence

|ΨDC〉 ≈ |0102〉+ γ |1112〉 . (3.21)

Thus, in the idealised lossless case, detecting a single photon in mode one guaran-

tees a single photon in mode two; we say the detection of |1〉1 “heralds” the state

|1〉2.
If |ΨDC〉 is injected into a linear optical network and only two detection events

are registered, it is as if we had the state |ΨDC〉 = |1112〉 and we say the two

photon state is “postselected”. A particularly useful case will be the Hong-Ou-

Mandel (HOM) interference experiment whereby modes one and two are injected

into either mode of a η = 1/2 beamsplitter. Recall from Section 2.6.6, in the

ideal case |ΨDC〉 = |1112〉 the probability of a coincidence event P(2-fold) = 0. If

however |ΨDC〉 =
√

1− γ |1112〉 +
√
γ |2122〉 (perhaps due to an increased pump

power), in the presence of non-number-resolving bucket detectors, four photon

events will masquerade as two photon events and it is straightforward to show

P(2-fold) = γ/4 > 0, hence quantum interference will be degraded.

As a metric for the quality of this interference we take a HOM-dip, whereby one

of the input photons is made distinguishable with respect to the other (usually via

a temporal delay ∆τ greater than its coherence length) so that P(2-fold) = 1/2 and

Nmax coincidences are collected. This temporal delay is then tuned such that ∆τ =

0 and Nmin coincidences are collected. The visibility V = (Nmax − Nmin)/Nmax is

then calculated as a metric for the quality of interference; which in the ideal case

V = 1, and in the fully distinguishable case V = 0.

3.2.3 Principles of Multi-photon Production

Experiments presented in this thesis require multi-photon, multi-mode states of the

form |1112 . . . , 1p〉— necessitating multiple down-conversion events. Consider two

down-conversion events |Ψ1
DC〉 and |Ψ2

DC〉 occurring simultaneously and identically

such that γ1 = γ2. Each system consists of two modes, so the entire system
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is described across four modes. The total output state is given by the tensor

products of these two events

|Ψ1
DC〉 ⊗ |Ψ2

DC〉 =
∞∑

j=0

γj |j1j2〉 ⊗
∞∑

k=0

γk |k3k4〉 (3.22)

which expanded up to the four-photon subspace reads

|Ψ1
DC〉 ⊗ |Ψ2

DC〉 ≈ |01020304〉+ (3.23)

γ (|01021314〉+ |11120304〉) + (3.24)

γ2 (|11121314〉+ |01022324〉+ |21220304〉) . (3.25)

Some remarks: first, with probability |γ|4 we have a four-photon superposition

state. In the idealised lossless case, measuring |1213〉 guarantees the state |1114〉;
in other words a heralded two-photon state. Furthermore, measuring |11〉 and

injecting modes {2, 3, 4} into a linear optical circuit then registering three and

only three detection events at the output of the circuit, behaves as if we had

injected into the circuit |121314〉.
Extending this technique to herald the generation of higher photon numbers

results in an exponential fall of in the probability of success. To postselect an

n-photon state requires n− 1 down-conversion events firing simultaneously. If the

probability for one crystal to fire is p, the probability they all fire is pn−1. Even at

a relatively high probability per clock cycle the multi-photon probability rapidly

falls off. For example, state of the art experiments report p = 0.058 yet an eight

photon rate of just 3 mHz (nine events per hour) [130].

Multi-photon Architectures

A variety of architectures can be used to realise multiple down-convertors. Perhaps

the conceptually simplest is a single pump laser passing through multiple crystals

in series (see Fig 3.3(a) and for example [129, 130]). If the laser is continuously

pumped both crystals generate photons according to independent Poissonian pro-

cesses, hence |Ψ1
DC〉 and |Ψ2

DC〉 will not be correlated in time. A pulsed laser
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Figure 3.3: Multi-photon architectures. A variety of multi-photon source architec-

tures with pump and down-converted photons depicted in blue and red respectively. (a)

Multi-crystal architecture, (b) single crystal multi-pass and (c) single-crystal single-pass.

system must therefore be used to ensure correlated photon production. Provided

the photon generation takes place in a time frame which is small compared to the

coherence length of the photons, the separate generation events can be considered

simultaneous. However, as we will see, in an experimentally realistic scenario if

this condition is not met the events become distinguishable and quantum inter-

ference is degraded. A further advantage of pulsed laser systems is the high peak

power, making γ large and the multi-photon production rate appreciable.

Another common architecture is the “double pass”, whereby the same laser

pulse is reflected (usually via a dichroic mirror) back through the crystal to gener-

ate photons in the reverse direction [Fig 3.3(b)]. This technique was used in some

of the earliest multi-photon generation experiments [80], and is still used to this

day (see for example [24, 142]).

A final architecture, and the one which we employ, is the single-crystal single-

pass technique whereby photons are collected at multiple points on the downcon-

version cone [Fig 3.3(c)]. As we have seen, the phase matching conditions (3.8) and

(3.9) are invariant to rotation about the pump, so pairs of photons are generated

on either side of a cone. This technique has widely been used in Bristol [143, 144]3

3For a novel method of collecting multiple modes on a downconversion cone see Rossi et al.

[145].
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and whilst all architectures are effectively equivalent, our choice was primarily

based on space constraints. However, in practice, other simplifications arose such

as ease of phase matching and filter alignment. Let us now discuss some of the

limitations of multi-photon production, noting that the major limiting factors are

architecture independent.

Sources of Error

To understand multi-photon error mechanisms we first define a figure of merit.

As in Section 3.2.2 we take the pragmatic approach of measuring quantum in-

terference via HOM dips. In contrast to the two mode case where only a single

combination of HOM dips can occur, the multi-mode regime offers a set of HOM

patterns. We define “pair dips” as dips between photons from the same creation

event (e.g. photons {1, 2} and {3, 4}), and “off-pair dips” as dips between photons

from different creation events (e.g. photons {2, 3}, {1, 4}). For the latter, if modes

{2, 3} from (3.25) are directly injected onto a beamsplitter, a maximum visibility

of V = 1/3 can only ever be observed. To see this note that only one of the three

superposition terms quantum interferes. To see an in principle full visibility dip,

the source must be operated in heralded mode: modes {1, 4} are sent into herald-

ing detectors, and modes {2, 3} onto a beamsplitter. In this case the heralding

projects (3.25) onto |1213〉 and an in principle full visibility dip can be observed.

Due to the magnitude of χ(2) seeing an appreciable multi-photon rate typically

requires larger pump power. In the four photon case that means increasing the

pump power such that p4 = |γ|4 is non negligible. Note however that the ratio

of higher order terms grows quadratically p6/p4 = |γ|2, so an increased pump

power results in an increased unwanted multi-photon emission probability. This

will manifest itself as decrease in both pair and off-pair dip visibilities.

Unwanted multi-photon events can in principle be arbitrarily suppressed by

reducing pump power and increasing integration time. Nevertheless, a second

source of error is intrinsic to the architecture and cannot be entirely removed:

temporal jitter. Temporal jitter occurs due to a finite pulse and crystal width, and

57



3. Photonic Processing Hardware
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Figure 3.4: Multi-photon error mechanisms. (a) Due to finite pulse width (blue) a

photon pair (red) can be born at the front of the pulse, and a pair at the back, yielding

temporal jitter τ1. (b) Due to group velocity mismatch daughter photons propagate

faster than pump photons, causing temporal jitter τ2 between photons in different pairs.

Adapted from Tanida et al. [146].

is analysed in depth by Tanida et al. [146] — here we describe it qualitatively and

discuss methods to minimise it.

Considering the single-crystal single-pass picture Fig. 3.4, there are two sources

of temporal jitter: first, due to the finite pump width, a pair of photons may

be born near the front of the pulse and a pair near the back of the pulse [see

Fig. 3.4(a)], causing temporal distinguishability between pairs as a function of the

ratio between pulse width and photon coherence length. This will manifest itself

only as a reduction in off-pair dip visibility. Experimentally this effect can be min-

imised by increasing the coherence length of the photon to be significantly larger

than the pulse width; experimentally achieved by passing the down-converted pho-

tons through narrow bandwidth filters (width ∆λ), thus increasing their coherence

length Lcoh = λ2/∆λ.

Second, due to finite crystal width, a pair may be born at the front of the

crystal and a pair at the back. If the pump and down-converted photons propagate

with same group velocity there would be no temporal mismatch. However crystals
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are dispersive, which means the refractive index, and hence the group velocity is

wavelength dependent [see (3.3)]; thus there will be some temporal jitter due to

group velocity mismatch [see Fig. 3.4(b)]. This effect can be minimised by reducing

the crystal width.

In general both solutions to temporal jitter come at the cost of decreasing

the multi-photon rate. Narrower filters throw away more photons, and narrower

crystals effectively reduce the Hamiltonian interaction time, thus reducing γ. The

necessary hardware for each experiment should therefore be judged on a case-by-

case basis, taking into account the need for high fidelity data versus quick data,

constrained by factors such as experimental instability and impending conference

deadlines.

3.3 Experimental Multi-photon Source

We now describe the multi-photon source which will be used through this thesis.

As shown in Figure 3.5, laser light from a tuneable 140 fs pulsed Titanium:Sapphire

laser (Coherent Chameleon-Ultra) tuned to 800 nm4 with 80 MHz repetition rate,

is attenuated via a high power half-wave plate (HWP) and Glan-Laser Polariser

(PBS) (Edmund Optics NT49-214 and NT47-250), then focused via a thin f =

0.15 m fused silica lens (CVI PLCX-UV) to a ∼ 40 µm waist for second harmonic

generation. This waist size is chosen so as to maximise intensity whilst maintaining

the plane wave approximation within the Raleigh range of the beam.

Two different Type-I eeo SHG crystals were tested: bismuth triborate BiB3O6

(BiBO) and β-barium borate (BBO). Whilst the former has a significantly higher

nonlinearity — with conversion efficiencies reported into ultraviolet of 50% [147]

— this high conversion efficiency comes at a cost. SHG via BiBO reduces the

bandwidth of the UV beam, stretching the pulse and thus increasing the temporal

jitter during SPDC [129]. Consequently, a reduction in off-pair dip visibility from

4We use this source over the wavelengths 780-808 nm dependent on the requirements of

waveguide devices, but all components modulo filters and crystals are suitable across this range.
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Figure 3.5: Experimental multi-photon source. Laser light at 800 nm is first

attenuated, then up-converted to 400 nm via second harmonic generation. The up-

converted beam is then focused onto a BiBO crystal to seed spontaneous parametric

down-conversion. Four points of the down-conversion cone (N,S,E,W coordinates) are

focused onto polarisation maintaining fibres, controlled by high precision fibre collection

stages. Full details and abbreviations are given in the main text.

V = 0.9 using BBO, to V = 0.8 for BiBO was observed. We therefore opt for

the higher fidelity yet lower efficiency 2 mm thick BBO crystal for SHG (Newlight

Photonics). In Figure 3.6 we plot a comparison of conversion efficiencies for BBO

and BiBO.

Once up-converted to 400 nm, the unwanted 800 nm light is removed via a series

of four dichroic mirrors (DM) and a beam dump (BD), then focused via a f =

0.2 m lens to a ∼ 40 µm waist to seed spontaneous parametric down-conversion.

As discussed in Section 3.2.2 we opt for a 0.5 mm Type-I BiBO down-convertor

(Newlight Photonics), designed to emit photons at an opening angle θop = 6
◦
.

Two pairs of 800nm down-converted photons (N,S,E,W as labelled in Fig. 3.5)

pass through a single ∆λ = 3 nm interference filter (IF) (Semrock Maxline),

and are reflected off prisms into four high-precision fibre collections stages (Elliot

Martock MDE122). Each collection stage is equipped for XYZ translation, and

full rotation control to a precision of 20 nm; along with a f = 11 mm aspheric
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Figure 3.6: SHG conversion efficiency. A comparison of second harmonic genera-

tion conversion efficiency for both BBO (red) and BiBO (blue) up-conversion crystals.

lens (Thorlabs C220TME-B) to focus the photons into single mode polarisation

maintaining fibres (PMF). Two of the four stages are equipped with motorised

actuators for automated control of the path length during HOM-interference type

experiments.

Down-converted photons are coupled as follows: Visible laser light is launched

from the collection stages and focused onto the centre of the SPDC crystal at

an angle of ∼ θop/2. Once all four stages are roughly aligned, the fibres are

connected to single photon counting, and collection stages are coupled, optimising

over coincidence count rates to insure correlated photon events.

3.3.1 Source Performance

At maximum pump power we observe a p-photon count rate Cp of C1 ≈ 5×105 Hz,

C2 ≈ 1×105 Hz and C4 ≈ 1×102 Hz; with a collection efficiency of C2/C1 ≈ 20%.

We quote these numbers approximately because they can fluctuate between exper-

iments based on a number of factors: lab conditions (temperature, humidity), laser

conditions (wavelength and power fluctuations), crystal degradation. In general,

higher quality results are obtained when losses are minimised and the source is as
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efficient as possible; in this regime pump power can be reduced, limiting the effect

of unwanted higher order terms.

Quantum interference is tested via a series HOM-interference experiments. We

first test pair-wise interference by injecting photons {E,W} directly onto a fibre

pigtailed η = 1/2 beamsplitter. The temporal delay x is then varied and coinci-

dences between output modes C2(x) are recorded. These coincidence events are

then numerically fitted to the function

C2(x) =
(
c1(x− c2)2 + c3

) [
1− V exp

(
−(x− xo)2

2∆x2

)
sinc (s1(x− x0))

]
, (3.26)

where ci describes the nonlinear decoupling of the collection stage; and V, x0,∆x

the dip visibility, centre and width (i.e. coherence length of the photon) respec-

tively. The sinc function described by s1 arises due to the Fourier transform of the

top-hat spectral profile of the down-conversion crystal; and the function C2(x) is

related to convolution of this and the Gaussian profile of the filter (see reference

[141] for an in-depth analysis). The results are plotted in Figure 3.7(a), where we

find a pair dip visibility of V = 0.990±0.008 (error taken as the error in parameter

fit).

We then perform an off-pair dip whereby photons {N,W} are injected into

either mode of the beamsplitter, and {E, S} provides the heralding signal. Col-

lecting four-folds and fitting to (3.26) yields V = 0.902± 0.01. From these fits we

estimate the coherence length of the photons to be Lcoh ≈ 140 µm, which we note is

significantly larger than the pulse width of the pump Lpump = c×140 fs = 0.4 µm.

Following the various analyses of dip visibility [146, 148] we determine group ve-

locity mismatch and higher order photon number terms to be the major sources of

reduction in off-pair dip visibility; with the finite pulse width and mode mismatch

each contributing less than ∼ 1%.
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Figure 3.7: HOM-interference dips. (a) A pair dip between photons {E,W}
(inset), plotting two-fold coincidence rate as a function of temporal distinguishability.

(b) An off-pair dip between photons {N,W} whilst heralding on {E,S} (inset). Error

bars assume Poissonian counting statistics.
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3.4 Integrated Quantum Photonics

DiVincenzo’s first criterion for the physical implementation of a quantum computer

states that any scalable platform for quantum computing must present:

“A scalable physical system with well characterised qubits.” [67]

This condition of scalability requires that the numbers of qubits encoded within

the platform can be arbitrarily increased to within the error threshold of the chosen

error correcting code.

Early demonstrations of LOQC relied upon polarisation encoded qubits due to

their ease of manipulation at the single photon level via wave-plates [84]. How-

ever scaling this system to larger numbers of qubits requires complex bulk-optical

interferometers stable to within the wavelength of light, and often taking up me-

ters in length; limiting demonstrations to just a few qubits [119, 142, 149]. This

constraint thus renders bulk optical LOQC unscalable.

A promising route towards scalability is the on-chip manipulation of light via

integrated photonics. Driven by the microelectronic industries need for ever in-

creased data rates [150], classical states of light are confined in nano-scale silicon-

based waveguides [151], and manipulated via fast electro-optic modulators [152].

The silicon platform offers CMOS compatibility, intrinsic nonlinearities for fre-

quency conversion or wavelength division multiplexing [153], and the use of com-

mercial fabrication facilities. However, applying a technology designed for manip-

ulating 106 photons per bit [154], to manipulating 1 photon per bit comes with a

number of challenges; most notably, loss.

Until recently, it was an open question as to whether the tools of integrated

photonics could be applied to the quantum regime. However, recent advances

— including results presented in this thesis — provide tantalising evidence of the

affirmative. Integrated quantum photonics has demonstrated high fidelity quantum

interference [11, 17], proof of principle demonstrations of Shor’s algorithm [143],

entanglement generation and manipulation [155], quantum chemistry simulations
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[156], quantum metrology [15, 157] and quantum key distribution [158, 159].

In the following we present an overview of the physics governing integrated

quantum photonics. Whilst the exposition is in no way intended as an in-depth

analysis; a qualitative understanding of the physics governing the platform will

aid an understanding of the results presented within this thesis.

3.4.1 Propagation of Light

In the following we consider two pictures of the propagation of light through waveg-

uide structures. The first, using just ray optics, provides an intuitive understand-

ing of confinement and propagation modes, but provides no tools with which to

describe waveguide coupling. The second, using electromagnetic fields, provides

a fuller picture, allowing us to describe phenomena such as waveguide coupling;

an essential ingredient for integrated quantum photonics. The analysis we present

follows the exposition of Lifante [151] and is intended as a pedagogic tool. In prac-

tice waveguide structures, including those presented in this thesis, are modelled

and designed using commercially available software.

Ray Optics Picture

A waveguide is an optical structure that allows the confinement of light within its

boundaries via total internal reflection. Whilst the experiments presented in this

thesis use channel waveguides, confining the light in two dimensions, for now we

consider the simplified one dimensional picture of a ray propagating via a zig-zag

path. In this picture [Fig. 3.8(a)] the waveguide consists of a core with refractive

index n1 surrounded by a lower refractive index cladding n2. The critical angle θc

is given by

θc = sin−1
(
n2

n1

)
, (3.27)

and total internal reflection occurs when the angle of incidence θ > θc. If this

condition is not met and θ < θc the light escapes into a radiation mode. Note, as

n2/n1 decreases θc increases, thus an increased refractive index contrast allows for
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Figure 3.8: Waveguide propagation. (a) The ray optics picture of a light ray

propagating through a waveguide with core refractive index n1, surrounded by a cladding

with lower refractive index n2. (b) The refractive index profile.

a smaller bend radius and more compact devices.

A second propagation condition must also be met, that the ray constructively

interferes. In a round trip through the core the light acquires a transversal [i.e.

x direction in Fig. 3.8(a)] phase shift dependent on the core width d, and phase

shifts due to reflection off the boundaries. The total phase shift is given by

φ = 2kxd− 2φr (3.28)

= 2kon1d cos θ − 2φr (3.29)

where kx is the component of the wave vector along the x-axis and φr is the phase

acquired upon reflection off the core-cladding boundary. Constructive interference

requires that the total transversal phase shift in a round trip should be an integer

number of 2π, hence we arrive at the transversal resonance condition for guided

modes

2kon1d cos θ − 2φr = 2πm (3.30)

where m is the mode number, telling us that light is guided in discretised modes.

The ray optics picture provides the intuition for two important concepts; con-

finement of light and discretised propagation modes. However, it cannot account
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for a core functionality of integrated devices — waveguide coupling. To that end we

not turn our attention to waveguide propagation in the picture of electromagnetic

fields as described by Maxwells equations.

Electromagnetic Fields

Maxwell’s equations fully describe the evolution of classical electro-magnetic fields.

For light propagating in a dielectric (conductivity σ = 0) non-magnetic (magnetic

permeability µ = µ0), isotropic and linear medium (D = εE), they are

∇E = 0; ∇× E = −µ0
∂H

∂t
; (3.31)

∇H = 0; ∇×H = ε0n
2∂E

∂t
; (3.32)

where E and H represent the electric and magnetic fields respectively, µ0 and ε0

the permeability and permittivity of free space respectively, and n the refractive

index of the medium. From these equations the following wave equations can be

derived:

∇2E− ε0µ0n(r)2
∂2E

∂t2
= 0, (3.33)

∇2H− ε0µ0n(r)2
∂2H

∂t2
= 0, (3.34)

where n(r) is the position dependent refractive index profile. Considering the

situation Fig 3.8(b), let us take n(r) = n(x); solutions to (3.33) and (3.34) take

the form

E(r, t) = E(x)ei(ωt−βz) (3.35)

H(r, t) = H(x)ei(ωt−βz), (3.36)

where ω is the frequency, and β the propagation constant of the wave. The aim

is for a given n(x) to find solutions for the complex field amplitudes E(x) and

B(x) according to Maxwells equations. There are two important regimes to con-

sider: when the propagating light has electric field with only transversal component

[i.e. y direction in Fig 3.8(a)] — the TE mode, and when the magnetic field has

transversal component — the TM mode. In the following we consider the former.
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By definition of the TE mode the only non-zero field components are Ey, Hx

and Hz, using this fact, and substituting (3.35) and (3.36) into Maxwells equations

(3.31) yields

Hx = − β

ωµ0

Ey; Hz =
i

ωµ0

∂Ey
∂x

(3.37)

iβHx +
∂Hz

∂x
= −iωε0n2(x)Ey. (3.38)

Substituting equations (3.37) into (3.38) and noting the electric field only depends

on x gives
d2Ey(x)

dx2
+
(
k20n

2(x)− β2
)
Ey(x) = 0, (3.39)

k0 is the wavenumber of the light in free-space. This differential equation fully

describes the electric field amplitude Ey(x) for TE propagation.

Let us postulate solutions, for the jth spatial region, of the form

Ej(x) = Aje
iγjx +Bje

−iγjx (3.40)

where Aj, Bj will be determined given appropriate boundary conditions and γj =√
k2on

2
j − β2, with nj the refractive index of that region. Examining possible solu-

tions we see that two distinct regions apply:

• If β < k0nj then γj is real and (3.40) is a sinusoidal function, corresponding

to a guiding mode.

• If β > k0nj then γj is imaginary and (3.40) is an exponential function,

corresponding to a radiative mode that does not guide.

Hence, for a given mode to guide through the waveguide the propagation constant

β must fulfil

k0n2 < β < k0n1. (3.41)

Writing wave equations for the core and cladding regions respectively gives

d2Ey(x)

dx2
+ κ2Ey(x) = 0 if − d/2 < x < d/2

d2Ey(x)

dx2
− γ2Ey(x) = 0 if x ≤ −d/2, x ≥ d/2

(3.42)
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where κ2 ≡ k20n
2
2− β2 and γ2 ≡ β2− k20n2

1. From (3.40) this yields solutions of the

form

Ey =





Aeγx x ≤ −d/2

Beiκx + Ce−iκx −d/2 < x < d/2

De−γx x ≥ d/2

(3.43)

where A,B,C, are constants dependent upon the waveguide properties and the

wavelength of light. This raises an important point not captured by the ray optics

picture: Maxwell’s equations allow for an exponentially decreasing evanescent field

outside of the waveguide core, meaning fields can be coupled between waveguides

— the governing principle behind directional couplers.

A final point: the waveguide properties (n1, n2, d), the wavelength λ and the

propagation constant β are related via the dispersion relation,

tan(κd) =
2γ/κ

1− γ2/κ2 (3.44)

and by noting the periodicity tan(2κd) = tan(2κd + mπ), a number of possible

solutions satisfy the wave equation. If there is only one solution at m = 0, that

is for a given λ and given waveguide geometry only a single β satisfies (3.44), we

say the device is single mode. If however there are solutions for m > 0 we say the

device is multi-mode. Multiple modes offer extra degrees of freedom which can

degrade quantum interference, so all devices presented in this thesis are designed

for single-mode operation.

3.4.2 Coupled modes

A key component for LOQC is a device which can split optical power between

adjacent spatial modes. Using the theory of evanescently propagating waveguides

detailed above, we now present a technique for coupling between modes: the di-

rectional coupler.

The modal coupling equations [151] for two coupled modes with optical field
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amplitude A(z) and B(z) are given by the differential equations

dA(z)

dz
= −iκa,bB(z)e−i(βa−βb)z; (3.45)

dB(z)

dz
= −iκa,bA(z)e+i(βa−βb)z; (3.46)

where κa,b is the coupling coefficient between the modes a and b, and β is the

coupling constant for those modes. The final term therefore represents mode-

mismatch. Consider the special case whereby the modes are the spatial modes

of two single-mode adjacent waveguides; simplifications can therefore be made by

letting the propagation constants in modes a, b be equal (βa = βb) and the coupling

symmetric κa,b = κb,a = κ. Under these conditions (3.45) and (3.46) reduce to

dA(z)

dz
= −iκB(z) (3.47)

dB(z)

dz
= −iκA(z). (3.48)

It is straightforward to verify the solutions

A(z) = A0 cos(κz)− iB0 sin(κz) (3.49)

B(z) = B0 cos(κz)− iA0 sin(κz), (3.50)

where A0 and B0 are the initial field amplitudes in the respective modes. We

consider this in the quantum mechanical picture by labelling modes {A,B} =

{|0〉 , |1〉}. Injecting a single photon into mode A (hence setting A0 = 1 and

B0 = 0) yields the evolution |0〉 → cos(κz) |0〉−i sin(κz) |1〉, and similarly injecting

into B yields |1〉 → −i sin(κz) |0〉+ |1〉 cos(κz). By linearity the unitary operator

governing this evolution is

Û(z) =


 cos(κz) −i sin(κz)

−i sin(κz) cos(κz)


 , (3.51)

which is equivalent to the variable coupler described in Section 2.6.3. In other

words, by tuning the coupler length, or equivalently the separation distance, on-

chip arbitrary reflectivity beamsplitters can be realised. Once again it is essential

these modes are phase matched; imperfections in fabrication processes will lead to

the possibility of higher order modes, and imperfect quantum interference.
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3.4.3 Modulation

The final functionality we desire is the ability to control, or modulate, light on

chip. Fast modulation in silicon is a prerequisite for high speed optical intercon-

nects [152]. Techniques using the Pockels effect or the Kerr effect, rely on the

electro-optic properties of materials to induce phase shifts in the presence of an

electromagnetic field; but are frustratingly weak in silicon. Other methods relying

on plasma-dispersion-effects such as carrier depletion have demonstrated modu-

lation speeds of up to 50 Gb/s [160], but come at the cost of increased loss (for

example 7 dB (80%) insertion loss in reference [160]).

In this work — where clock-speeds are limited by multi-photon source rates

— we use a much slower, yet lower loss phenomena: the thermo-optic effect. The

thermo-optic effect arises from the the molecular polarisability of the material.

To understand this, recall the argument from Section 3.2.2 where the relative

permittivity εr, which captures the ease at which dipole moments are induced in

a material

P = ε0(εr − 1)E, (3.52)

is directly linked to the refractive index n =
√
εr, and hence the refractive index

is a measure of how easily dipole moments are induced.

As Born and Wolf note in their excellent exposition, the molecular polarisability

α provides a “conceptual bridge which connects Maxwell‘s phenomenological theory

with the atomistic theory of matter” [83]. It describes the induced dipole moment

due to a single molecule

P = Nε0αE, (3.53)

where P is the polarisability per unit volume and N the number of molecules per

unit volume. As before, this quantity can be related to the refractive index via

the Lorentz–Lorenz equation5

n2 − 1

n2 + 2
=

4π

3
Nα. (3.54)

5In a remarkable coincidence, two physicists with almost exactly the same names, indepen-

dently discovered the same effect at almost exactly the same time.
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Now, the molecular polarisability is a function of temperature [161]. Why? Well

increasing the temperature increases the energy of the molecule which increases

the internuclear distance between the electrons and the nucleus (recall the canon-

ical Leonard-Jones potential). This distance is what determines the dipole mo-

ment, and hence the polarisability, therefore the refractive index is temperature

dependent. A similar argument solving the equations of motion for the orbiting

electrons, tells us the internuclear distance is also a function of the frequency of

electromagnetic field, giving rise to dispersion [83].

Experimentally, the quantity which captures the magnitude of this temperature

dependence is the thermo-optic coefficient dn/dT which for the universal LPU

presented in Chapter 6 is 1× 10−5 ◦C−1. Finally we note, that whilst the thermo-

optic effect is strong in silicon based devices at room temperature, it drops by

four order of magnitude at cryogenic temperatures [162]. Thus, if devices are to

be used at working temperatures for superconducting detectors (see Section 3.6),

alternatives to thermo-optic modulation must be sought.

3.5 Experimental Platforms

Many different material systems, waveguide geometries and fabrication techniques

exist, each with their relative merits and drawbacks. A decision to adopt a partic-

ular platform should be made based on the users requirements6. For commercial

applications, considerations such as compactness, modulation speed, ease of fab-

rication and cost play an important role. For our purpose, waveguide circuits will

mainly be interfaced with the multi-photon source described in Section 3.3; as the

probability of seeing a p-fold event in the presence of loss l scales as (1− l)p a key

requirement is low loss circuitry. Typically, this comes at the cost of compactness

[164].

Three material platforms are used within this thesis: silica, silicon oxynitride

6We note a recent promising proposal whereby multiple materials are monolithically integrated

onto a single circuit [137, 163].
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and silicon nitride. In the following we introduce these platforms, presenting de-

vice details such as waveguide geometries and fabrication methods, along with

a discussion of their relative merits and drawbacks — the results of which are

collected in Table 3.1. Whilst modelling and fabrication work was mostly done

external to Bristol, platform details dictate experimental procedures, and certain

limitations of the platform only become apparent when used within the full LPU

— so a knowledge of the device is essential to correct and minimise errors.

3.5.1 Silica

In Chapter 6 we report an active silica-based fully reconfigurable waveguide device

across six modes (labeled Device A in Table 3.1). The chip was conceived in Bristol

and designed, fabricated and packaged by collaborators at the Nippon Telegraph

and Telephone company (NTT) in Japan. The device was then tested, calibrated

and used for quantum information processing in Bristol.

Integrated silica (SiO2) based components are highly desirable due to their

compatibility with commercial fibre optic network systems, and low loss nature.

Typical fibre optic cables consist of a silica cladding, with a slightly higher refrac-

tive index silica-doped core of about 8 µm in diameter, and can achieve losses of

0.2 dB/km at 1550 nm [165].

Due to these favourable low loss properties, the first integrated quantum pho-

tonic demonstrations were performed on the silica platform; including high fi-

delity quantum interference with passive quantum gates [11], proof of principle

algorithms [143], active Mach-Zehnder interferometers [15] and reconfigurable two

qubit gates [155]. Our universal processor represents the natural evolution of this

genesis.

Our silica-based planar lightwave circuit (PLC) [166] was fabricated by first

depositing a layer of silica, then germanium doped silica (SiO2-GeO2) onto a silicon

substrate via flame hydrolysis deposition to give a core cross sectional dimension

of 3.5 µm × 3.5 µm. The substrate and glass layers are then heated to 1000 ◦C
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for consolidation, and waveguides are then patterned via photolithographic and

reactive ion etching techniques. Finally the silica over-cladding is then deposited

and consolidated, and thin-film Tantalum Nitride (Ta2N) thermo-optic heaters

fabricated on top of the circuit measuring 1.5mm× 50µm. See reference [167] for

further fabrication details.

The core-cladding refractive index contrast

∆ =
n2
core − n2

cladding

2n2
core

(3.55)

was designed to be ∆ = 0.45% at our working wavelength (808nm) giving a mini-

mum bend radius of 12 mm. For the purpose of interfacing with the multi-photon

source in Section 3.3, a highly desirable property is low insertion and propagation

losses. The large core size means the waveguide is well matched to 4 µm diameter

single mode fibres used for in- and out-coupling, giving insertion losses 0.4dB/facet

(9%). Whilst measurements of propagation loss at 800 nm haven’t been made, at

telecom wavelengths 0.3 dB/m has been reported [168]. Directional couplers are

designed to have a length of 500µm and a waveguide gap of 2µm, with each direc-

tional couplers loss estimated to be less than 0.1 dB (2.3%). The mean insertion

loss (fibre to fibre) averaged over all modes (including 30 directional couplers) is

measured as 2.4 dB (42%).

3.5.2 Silicon Oxynitride

In Chapter 5 we report a 21-mode array of continuously evanescently coupled

waveguides (Device B). The complexity of this system requires a significantly more

compact architecture than silica-based devices can offer. Consequently we opt for

the core material silicon oxynitride (SiOxNy), whose refractive index can be tuned

by carefully varying the ratio of silicon to nitrogen during the plasma-enhanced

chemical-vapor-deposition process. The device was fabricated by collaborators at

the University of Twente [169, 170].

The waveguide array was fabricated with a silicon oxynitride core surrounded

by a silca cladding. The index contrast of ∆ = 2.4% enables fabrication of micron
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sized single mode waveguides in compact circuit designs with a minimum bend

radius of 560 µm. The waveguides are designed with a constant width of 2.2 µm

and height of 0.85 µm. They are pitched at 1.3 µm within the coupling region of

length 700 µm in order to achieve sufficient mode overlap for nearest neighbour

coupling. The waveguides bend adiabatically to a pitch of 127 µm at the input

and output facets to match the standard separation of the fibre arrays we butt

couple to the chip. The waveguides are tapered to a width 0.7 µm at the facet to

achieve better mode overlap with the fibre modes, this way we obtain an overall

fibre to fibre coupling efficiency of ∼ 30%. Similar silicon oxynitride continuously

coupled waveguide devices have been used to demonstrate two photon quantum

walks [18], simulate fermion particle statistics [171], and observe the coherent time

evolution of walkers [172].

3.5.3 Silicon Nitride

In Chapter 5 we present a passive waveguide device fabricated in stoichiometric

silicon nitride Si2N3 (Device C). The device was conceived in Bristol and designed

and fabricated by the company LioniX.

Silicon nitride has a significantly higher refractive index contrast with silica

than both silica-doped and silicon oxynitride cores, with ∆ ≈ 25%. As loss due

to sidewall roughness scales as ∆2 [164] the high refractive index contrast may

limit the interfacing of silicon nitride with bulk-multi photon sources. Techniques

have been developed to reduce this effect by employing high aspect ratio waveguide

geometries where the width (∼ 3 µm) far exceeds the thickness (∼ 90 nm), yielding

losses of 3 dB/m [173]; however this asymmetric core results in heavily birefringent

behaviour, and requires low loss spot convertors for matching with single mode

fibres.

Our silicon nitride system was designed with a refractive index contrast of

∆ = 27% at our working wavelength 780 nm, with a waveguide width of 1.5 µm.

Outside the interaction region waveguides are separated by 127 µm and to realise
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Device A B C D

Material SiO2 SiOxNy Si2N3 Si2N3

Circuit Active CCWA Active Passive

Footprint 4cm ×10cm 2.7mm × 75mm 1.0mm×31mm 1.1mm×31mm

Core size 3.5µm× 3.5µm 2.2µm× 0.85µm 1.5µm× 0.1µm 1.5µm× 0.1µm

λ 808nm 780nm 780nm 780nm

∆ 0.45% 2.4% 27% 27%

Bend radius 12mm 560µm 200µm 200µm

DC length 500µm 700µm 400µm 400µm

Transmission 58% 30% 7% 5%

Table 3.1: Comparison of waveguide platforms. A comparison of different

waveguide platforms (labels given in main text) consisting both active and passive

waveguide devices, and continuously coupled waveguide arrays (CCWA). Compar-

ison includes core size (given as w × h), operating wavelength λ, refractive index

contrast ∆, directional coupler (DC) length, and facet-to-facet transmission.

directional couplers waveguides are bought to within 2.5 µm of one another, for

an interaction length of ∼ 400 µm (dependent on the desired splitting ratio). The

fibre to fibre coupling efficiency was ∼ 5%.

On the same fabrication run we also received an active waveguide device com-

prising 24 directional couplers and 19 active phase shifters. During characterisation

it became apparent losses where prohibitively high due to an error in the spot size

convertor. Whilst we don’t present quantum information processing results using

this device, we do include it in Table 3.1 for comparison (Device D).

3.5.4 Interfacing

We have so far presented the individual components which comprise LPU’s, but we

further require they can be efficiently interfaced with one another. To that end,

we now describe two methods with which to couple and control single photons
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on-chip for both passive and active circuitry.

Passive Interfacing

For passive waveguide circuits we are typically interested in having the flexibility

in rapidly testing multiple devices, whilst maintaining experimental stability over

long data runs. To this end we have designed a stable yet temporary optical

coupling rig whereby single-mode polarisation maintaining V-Groove fibre arrays

(127 µm pitch) are butt-coupled to the waveguide devices via high precision fibre

optic launch stages (Elliot Martock MDE122, MDE185) to give full XYZ and roll-

pitch-yaw control. The resolution of the coupling rig is ∼ 20 nm, well within the

range of the 4 µm fibre core size. Index matching oil with the same refractive

index as the silica core is placed between the chip facet and fibre array to enhance

coupling. Waveguide devices can be coupled in less than an hour and remain stable

for several weeks.

Active interfacing

The requirements for interfacing thermo-optically controlled active devices is markedly

different. Much like in a computer, a single device will be used many times; in that

case it will be beneficial to optically and electrically package the device. This pro-

cess prevents decoupling due to thermal expansion, making the device incredibly

stable and robust thus reducing experimental noise.

Both active devices were optically and electrically packaged using essentially

the same processes; the silica device was externally packaged at NTT, whilst the

silicon nitride device was packaged in-house. Whilst the latter ultimately wasn’t

used for quantum information processing, we describe the packaging process here

to highlight an example of a possible packaging technique.

The silicon nitride device was first mounted onto a copper based printed cir-

cuit board (PCB) via a thermally conducting epoxy then wire-bonded for electrical

interfacing. Glass based V-Groove fibre arrays were then coupled to the chip us-

ing an ultra high precision (1 nm resolution) piezo controlled fibre launch system
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Figure 3.9: A packaged reconfigurable waveguide device. Reconfigurable

waveguide device, optically and electrically packaged for interfacing with single photon

source, single photon counting and electrical control. See main text for details.

(Thorlabs NanoMax), and attached to the chip facet via ultraviolet curing epoxy

adhesive. This entire device is then fixed to a Peltier cooling unit which is ac-

tively temperature stabilised by a thermoelectric cooler (Arroyo Instruments 5240

TECSource) to ambient lab temperature (20 ◦C).

We developed a custom electronic circuit to deliver power to each of the on-

chip heaters independently. This circuit consisted of four sets of the following:

one micro-controller for communication, arithmetic, and measurement; eight 12-

bit digital-to-analogue converters; eight high-power non-inverting drive amplifiers;

eight current-measurement amplifiers; and eight 12-bit analogue-to-digital convert-

ers for reading out the current sourced to each heater. Each of the 32 drive ports

delivered up to 20 V, with 4.9 mV resolution, and could source up to 100 mA of

current, with a measurement resolution of 24 µA.
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3.6 Single Photon Detection

The detection of single photons has broad application in science; from biological

imaging [174], to astronomy [175], to long distance sensing [176]. In the context

of LOQC, single photon detection is the means with which the qubit state is

readout (see Section 2.5.2 and DiVincenzo’s fifth criterion), so it is crucial we

have high fidelity techniques for converting a single quanta of energy ∼ 10−19 J

to an electrically detectable macroscopic state of ∼ 106 electrons. In general this

requires a high gain, low noise medium.

There are a number of desirable properties for a single photon detector. It

should have high efficiency, so given that the presence of a single photon, the

probability of registering the event is high. It should have low dark count rates,

whereby the probability of a false detection is small. There should be low jitter,

where the time uncertainty between absorbing the photon and emitting a signal

is small. Finally it should have quick reset time. Perhaps unsurprisingly, it is a

significant challenge fulfilling all of these criteria.

In particular for LOQC, one of the biggest challenges is computing in the pres-

ence of loss. Error correcting techniques have shown loss of up to 50% can be

tolerated in the absence of qubit errors [177], whilst loss of 10% can be tolerated

with moderate error levels (perror = 0.3%) [178]. Therefore high efficiency detec-

tors are essential for scalable LOQC. A promising approach are superconducting

nanowire single photon detectors (SNSPD’s) which have demonstrated high effi-

ciencies (93%), low dark counts (∼ 1 Hz), low timing jitter (∼ 150 ps), and quick

reset time (∼ 40 ns) [179]. Moreover these detectors can readily be integrated [21]

making them free of the loss associated with coupling light off chip.

Whilst SNSPD’s are a promising approach, they are still very much a nascent

technology, and not available on the scale we require. For our purpose we are

interested in accessing large Hilbert spaces, with a view to pushing the limits of

what’s simulatable with classical systems. To that end we require many detectors

n = 16, at a relatively low cost, with high efficiency at our working wavelength
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(800 nm). These conditions are met by commercially available silicon avalanche

photodiodes.

3.6.1 Experimental Single Photon Counting

For experiments presented in this thesis we use an array of 16 silicon avalanche

photodoides (SPADS), with time-correlated single photon counting (TCSPC) ca-

pability. The detectors (Perkin Elmer SPCM-AQRH-14) have efficiency of ∼ 60%,

dark count rate of ∼ 100 Hz, timing jitter of ∼ 350 ps and a reset time of 32 ns.

Using such a large number of detectors in the multi-photon regime presents a

number of challenges. First, individual SPAD’s can typically have a large variation

in electronic delay (up to 10 ns). When looking for correlated detection events (i.e.

when multiple photons arrive simultaneously at detectors), these delays must be

carefully characterised and corrected for. Second, the photon source is clocked

at the repetition rate of the pulsed laser (80 MHz), which means we must have

full control of the coincidence window — the maximum time between which two

detection events are considered a coincidence.

Both these challenges can be overcome in hardware using electrical delays lines

and FPGA counting logic, however this is often cumbersome. For this work we have

developed a 16-channel TCSPC module, which ‘time-tags’ all possible
(
16
p

)
p-fold

coincidence events in realtime. As all events are recorded to within 80 ps accuracy,

delays and coincidence windows can be implemented in software. Delays are found

using a custom built auto-correlation software, and the coincidence window is set to

3 ns — above the jitter of detectors (so we don’t miss coincidences) and below the

12.5 ns clock rate of the pulsed laser system (so we don’t mistake non-coincidences

as coincidences). For a full description of the detection system — the ‘Hilbert

space telescope’ — see the thesis of P. J. Shadbolt [180].
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3.7 Concluding Remarks

We have demonstrated key core components for the LPU’s presented later in this

thesis, along with the underlying physics governing their operation. This deeper

understanding is indispensable: First, it provides methods with which to identify

and rectify errors. For example, a decrease in multi-photon source performance

may give rise to a particular pattern of errors in some quantum information pro-

cessing task. An intimate knowledge of the source, its limitations (such as experi-

mental instability, crystal degradation etc.) and the manifestation of these errors

can allow this problem to be rapidly diagnosed, and ultimately fixed.

Second, the lessons we learn about the limitations of our current systems will

feed into the design of next generation LPU’s. For example, understanding the

particular mechanisms by which a waveguide can introduce distinguishability, and

its affect upon computation, will allow this affect to be minimised in future designs.

This broad approach of precisely understanding the individual components will be

crucial for any quantum technology, not least the ultimate photonic goal of a

monolithically integrated LPU.
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4
Hardware Characterisation

Statement of Work

The original super-stable tomography protocol is due to A. Laing. All proposed

extensions, numerical analysis, experimental implementations and subsequent data

analysis are due to myself.

4.1 Introduction

Understanding the real life processes which govern the evolution of quantum sys-

tems is a prerequisite for any scalable quantum technology. In principle the omni-

scient experimentalist who knows all parameters in her setup can use Schrödinger’s

equation to deterministically predict the evolution of the system. In reality this
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is never the case. Experimental devices cannot be made with infinite precision,

meaning the experimentalist never has full knowledge about her device.

General protocols for fully characterising an unknown quantum process have

been well studied [84, 181] and implemented in a variety of physical systems (for

example trapped ions [182], superconducting qubits [183], nitrogen-vacancy centres

[184] and linear optics [185]), but due to the exponential number of parameters

required to describe a process, rapidly become impractical as systems scale up.

A further concern with using methods like quantum process tomography to accu-

rately determine a device error ε, is that you are ultimately limited by the precision

of your preparation and measurement device ε′. If ε < ε′ (a SPaM error), ε becomes

inaccessible.

A more practical approach — and one which we opt for here — is to charac-

terise a specific quantum device, with known properties. By making well informed

assumptions about the system, the size of the characterisation problem can be

significantly reduced. This ‘hardware level’ characterisation can detect specific de-

vice errors which can either be corrected for in situ, fed into future device designs,

or be accounted for at an error correcting code level (see for example loss tolerant

error correction schemes suitable for linear optical quantum computing (LOQC)

[178]).

In this chapter we investigate a hardware characterisation technique designed

for LOQC — super-stable tomography (SST) — and propose a series of practical,

and experimentally motivated extensions. In Section 4.2 we review the original

SST protocol, and in Section 4.3 implement it by characterising a nine-mode waveg-

uide device; noting that such a reconstruction via traditional methods would have

been completely infeasible. We then extend this technique in Section 4.4; making

it quick, robust and practical, and demonstrate its efficacy on a 21 mode array of

continuously coupled waveguides in Section 4.5. Finally, in Section 4.6, a full nu-

merical error analysis of these techniques is performed, and based on these results,

in Section 4.7, we propose an error corrected reconstruction protocol, demonstrat-

ing a 20% advantage in reconstruction fidelity through numerical experiments.
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4.2. Super-Stable Tomography

4.2 Super-Stable Tomography

Lossless linear optical circuits are described by m×m unitary matrices Û ∈ Cm×m

relating input and output probability amplitudes (see Section 2.6.1). The number

of parameters describing this m-mode system grows as O(m2) and can therefore be

efficiently accessed. Protocols exist for determining Û using coherent states of light

and interferometric measurements [186], yet demands for stability on the scale of

the wavelength of light, in-practice, render this method as troublesome. Moreover,

waveguides devices are dispersive; that is the refractive index and thus the prop-

erties of directional couplers and phase shifters are a function of the wavelength

of incident light. Therefore, the unitary depends on the wavelength of incident

light. Using a light source to characterise a device which does not have precisely

the same spectral properties as the photons with which you ultimately hope to

compute with, may result in an erroneous reconstruction. We therefore opt for a

technique which circumvents both these challenges.

Super-stable tomography (SST) due to Laing and O’Brien [187], uses single

photons and two-photon measurements (along with correlated photon detection)

to efficiently determine Û . The advantages of this approach is that it requires in-

terferometric stability on the order of the coherence length of the photons (which

can be increased arbitrarily), such that systematic state preparation and mea-

surement errors are minimised. Additionally, it uses the same resources for both

characterisation and operation.

A schematic of the SST protocol is depicted in Fig. 4.1. The key result of SST

is the existence a one-to-one (i.e. bijective) mapping between all single photon

and a subset of two-photon measurements and the transfer matrix describing the

circuit. In other words, a linear optical circuit is uniquely defined by all 1 × 1

and a subset of 2× 2 permanents. A practical advantage of the scheme is that it

reconstructs a unitary description of the circuit independent of input and output

losses. This is important as coupling efficiencies in and out of integrated chips and

single photon detection efficiencies are the dominant source of loss.
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Figure 4.1: The SST protocol. (a) Single photons input in modes {k, h} and detected

in modes {j, g} can be used to reconstruct the unitary matrix Û independent of input

and output losses D̂I and D̂O. (b) Input modes {k, h} select columns of Û while output

modes {j, g} select rows.

4.2.1 SST Protocol

Here we review the SST protocol. We begin by decomposing the transfer matrix

into D̂O.Û .D̂I , where D̂I and D̂O are diagonal matrices corresponding to the losses

at the inputs and outputs respectively and Û ∈ τj,ke
iαj,k is the unitary to be

determined. To reconstruct the amplitudes τ , a series of experiments are performed

whereby single photons are input into mode k and the count rate Rj,k is measured

for each output mode j (see Figure 4.1 for details of the labelling convention).

Using the relation

xg,h,j,k =
τj,kτg,h
τj,hτg,k

=

√
Rj,kRg,h

Rj,hRg,k

, (4.1)

so xg,h,j,k is a value which can be experimentally determined. Then considering

τg,h =
τj,hτg,k
τj,k

× xg,h,j,k, (4.2)

and fixing j, k = 1, each amplitude can be written as a function of the elements

on the border of the matrix.

The phases α are determined using the rates of coincident detection of two

photons input in modes {k, h} and detected in modes {j, g} (see Fig 4.1). The

visibility of a two photon detection pattern is given by V ≡ C−Q
C

where C is the
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4.2. Super-Stable Tomography

probability of coincidental detection for distinguishable particles (achieved by de-

liberately introducing a temporal delay between photons) and Q is the probability

of coincidental detection for indistinguishable particles. Defining

yg,h,j,k ≡ xg,h,j,k + x−1g,h,j,k, (4.3)

the relation

αj,k − αj,h − αg,k + αg,h = arccos(−1

2
Vg,h,j,k yg,h,j,k) (4.4)

is used to calculate the magnitude of the phases. Note, for a realistic photon

source, quantum interference is typically non-ideal. In this case a correction can

be applied to (4.4) by calculating V = Vm/Vs where Vm is the measured visibility

through the device and Vs the raw (non-ideal) visibility from the source.

Since input and output phases cannot be detected without further interferom-

etry, all border element phases α1,k, αj,1 = 0. Therefore, by setting j, k = 1 there

is only one unknown on the left of (4.4) and the magnitude of all phases is deter-

mined. To determine the signs of the phases, first note that since the statistics of

the unitary are equivalent up to a global phase, α2,2 can be defined to be positive.

Using

cos(αj,k − αj,h − αg,k + αg,h) = −1

2
Vg,h,j,k yg,h,j,k (4.5)

to solve for the sign αg,h, device ports are judiciously chosen such that the other

three phases are known, let us call their sum γ. Further more, the right hand side

of (4.5) is also known, let us call it X. The task is therefore

cos(γ ± |αg,h|) ?
= X, (4.6)

Which can be done by computing

sgn[|cos(γ − αg,h)−X|−|cos(γ + αg,h)−X|]. (4.7)

To find the signs of the second column, set j = 2, k = 1, h = 2 and g = [3,m].

Signs on the second row are found by setting j = 1, k = 2, g = 2 and h = [3,m].

The remainder are found by setting j, k = 2. The border amplitudes can now
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be found by solving a system of linear equations which enforce orthonormality

constraints.

Due to inevitable experimental noise, the reconstructed matrix M̂ will in gen-

eral not be unitary (note that not all orthonormality constraints were applied).

To find the unitary matrix closest to M̂ , a polar decomposition can be performed.

Defining

P̂ =
√
M̂ †.M̂ , (4.8)

then the nearest unitary to M is given by

Û = M̂.P̂−1, (4.9)

completing the reconstruction procedure.

4.2.2 A Worked Example

For clarity we present a worked example. We first generate an m = 4 mode random

unitary

Û =




0.432 0.721 0.351 0.413

0.376 0.225 − 0.19i −0.782 + 0.381i −0.121 + 0.007i

0.245 −0.473− 0.151i −0.159− 0.147i 0.704 + 0.389i

0.782 −0.358 + 0.138i 0.232 − 0.137i −0.39− 0.125i



, (4.10)

along with the following randomly generated loss matrices

D̂I =




0.949 0. 0. 0.

0. 0.868 0. 0.

0. 0. 0.445 0.

0. 0. 0. 0.192




; D̂O =




0.312 0. 0. 0.

0. 0.808 0. 0.

0. 0. 0.873 0.

0. 0. 0. 0.163



. (4.11)

Single photon measurements give a matrix

R =




0.016 0.038 0.002 0.001

0.083 0.043 0.098 0.0004

0.041 0.142 0.007 0.018

0.015 0.003 0.0004 0.0002



, (4.12)
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which using (4.1) and (4.2) and setting j, k = 1 gives

Γ =




τ11 τ12 τ13 τ14

τ21
0.470τ12τ21

τ11

2.857τ13τ21
τ11

0.338τ14τ21
τ11

τ31
1.217τ12τ31

τ11

1.09178τ13τ31
τ11

3.436τ14τ31
τ11

τ41
0.295τ12τ41

τ11

0.425τ13τ41
τ11

0.548τ14τ41
τ11



, (4.13)

thus all amplitude elements are functions of unknown boarder elements. Next we

solve for phase magnitudes. Defining boarder elements to be 0, making two photon

quantum interference measurements with j, k = 1 and using (4.4) yields

|Φ|=




0. 0. 0. 0.

0. 0.701 2.688 3.083

0. 2.832 2.394 0.505

0. 2.773 0.534 2.831



. (4.14)

We then solve for phase signs by taking further two photon experiments as pre-

scribed in Section 4.2.1, and computing (4.7) to give a phase matrix

Φ =




0. 0. 0. 0.

0. −0.701 2.688 3.083

0. −2.832 −2.394 0.505

0. 2.773 −0.534 −2.831



. (4.15)

Finally we combine these into M̂ = Γ exp(iΦ) to give

M̂ =




τ11 τ12 τ13 τ14

τ21
(0.359−0.303i)τ12τ21

τ11
− (2.568−1.252i)τ13τ21

τ11
− (0.338−0.02i)τ14τ21

τ11

τ31 − (1.159+0.371i)τ12τ31
τ11

− (0.801+0.742i)τ13τ31
τ11

(3.007+1.663i)τ14τ31
τ11

τ41 − (0.275−0.106i)τ12τ41
τ11

(0.365−0.216i)τ13τ41
τ11

− (0.522+0.167i)τ14τ41
τ11



. (4.16)

Setting τi,1 = τi,j = 1, and solving the linear equations

M̂.[τ 211, τ
2
12, τ

2
13, τ

2
14]

ᵀ = [1, 0, 0, 0]ᵀ (4.17)

M̂ †.[τ 211, τ
2
21, τ

2
31, τ

2
41]

ᵀ = [1, 0, 0, 0]ᵀ, (4.18)
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yields

[τ 211, τ
2
12, τ

2
13, τ

2
14]

ᵀ = [0.187, 0.519, 0.123, 0.171]ᵀ (4.19)

[τ 211, τ
2
21, τ

2
31, τ

2
41]

ᵀ = [0.187, 0.141, 0.060, 0.612]ᵀ, (4.20)

which substituted into (4.16) gives

M̂ =




0.432 0.721 0.351 0.413

0.376 0.225 − 0.19i −0.782 + 0.381i −0.121 + 0.007i

0.245 −0.473− 0.151i −0.159− 0.147i 0.704 + 0.389i

0.782 −0.358 + 0.138i 0.232 − 0.137i −0.39− 0.125i




(4.21)

as required.

4.2.3 Resource Scaling

Determining amplitudes Rj,k requires m2 single photon measurements, and deter-

mining phases (including signs) Φ requires (m − 1)2 + (m − 2)2 − 1 two-photon

measurements. Note, in the latter case, the number of two-photon measurements

is less than total number available
(
m
2

)2
. In Section 4.7 we use this redundancy to

make the protocol more robust to experimental errors.

4.3 SST implementation

Variants on SST have been used to reconstruct small circuits (m ≤ 6) [23, 25, 26],

but in the following we use SST to reconstruct, to the best of our knowledge,

the largest photonic circuit to date: the nine-mode waveguide device presented in

Section 3.5.3 [see Fig. 4.2(b)].

To obtain the count matrix Ri,j, heralded 780 nm single photons from the

source described in Section 3.3, were injected into modes k whilst monitoring

output modes j. This totals 81 single photon measurements, but as all output

modes are monitored simultaneously the experimentalist effectively makes nine

measurements [see Fig. 4.2(b)]. Each measurement was taken for 90s such that

the relative error due to Poissonian statistics on each element of R was < 0.5%.
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Figure 4.2: Experimental SST. (a) Single photons and pair photons probe the nine-

mode waveguide device comprising 36 directional couplers and fixed phase shifts in silicon

nitride. (b) Raw single photon (left) and two photon measurements (right) are fed into

the reconstruction algorithm to output the unitary description of the device.

To obtain the visibility matrix Vg,h,j,k pairs of 780nm photons were injected

into modes {k, h} where k = [1, 2] and h = [2, 9], and all
(
9
2

)
= 36 two-fold

events were measured simultaneously. The full 64 phases were reconstructed, along

with a subset of 15 signs, totalling 79 two-fold measurements, which as all output

modes are measured simultaneously, equates to nine two-photon experiments [see

Fig. 4.2(b)].

In principle this should be no harder than performing nine Hong-Ou-Mandel

interference experiments, however, in practice, various experimental details make

it significantly more challenging. Specifically, each fibre connected to the V-Groove

array on the input varies in length by up to ±2mm. A single two-photon experi-

ment involves matching these path lengths to on the order of the coherence length

of the photon (∼ 140µm). To do this the two photon state |11〉k,h is injected into

fibres {k, h} and the path length of one of the input modes is varied by a motorised

linear actuator on the collection stage. As the path length is varied two-fold coin-

cidences on the output are monitored till a characteristic ‘dip’ is found, signalling
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the path lengths are matched [see Fig. 4.2(b)].

For this particular device high facet loss (∼ 95%) means that the probability

of a two-photon event is small p = (1 − 0.95)2, which coupled with a two-fold

count rate of ∼ 100kHz split over 36 possible two-fold events give an effective

count rate of 0.052 × 105/36 ≈ 7Hz. To get statistics significant enough to see

a dip we move at a rate of 5 s/µm which along with regular restarts to recouple

the moving arm of the source, means finding a single dip can take up to half a

day. Once found, the source was tuned to a low power to reduce higher order

terms thus increasing the maximum dip visibility (Vmax ≈ 0.95), and the linear

actuator was scanned over the range ±400µm in 10µm steps for 30 s per point.

Two photon count rates were fitted as described in Section 3.3.1. Fitted dips for

all input configuration {k, h} = {1, 2} are displayed in Fig. 4.2(b). The count-rate

matrix Rj,k and visibility matrix Vg,h,j,k (normalised by the known dip visibility)

are then fed into the reconstruction algorithm to output a unitary matrix.

To test the reconstruction, the circuit should be probed with a state which was

not itself used as part of the procedure, and the results compared with theory based

on the reconstruction. Preempting a result in Section 5.7.4, we probe the circuit

with ensembles of three photons giving rise to a probability distribution pi with

84 elements (see Section 5.7.4 for full details of the calculation). The statistical

fidelity Fs =
∑

i

√
pexpi pthi between the normalised theoretical pthi (based on the re-

construction) and experimental pexpi probability distributions is calculated, finding

F qs = 0.939± 0.010 and F cs = 0.970± 0.007 for indistinguishable and distinguish-

able photons respectively. High fidelities imply accurate reconstruction of a large

waveguide system. A full reconstruction of the three qudit nine-dimensional pro-

cess via quantum process tomography (QPT) would require (92×3− 1)2 ≈ 3× 1011

measurements [188]. Leveraging the experimentalists information about a system,

namely the nature of the device that gives rise to the process, can significantly

reduce the size of the problem.
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4.4 Iterative SST

Whilst SST is mathematically proven to reconstruct a unique unitary description

of the device, in certain settings it can be experimentally impractical. Obtaining

an entire visibility matrix can often take days, which if there are unknown changes

occurring in the device or source, will manifest itself as errors in the final recon-

struction. Moreover, if a large number of devices must be rapidly characterised

(as is often the case with new fabrication runs) full SST is out of the question. We

have therefore developed a rapid and robust extension of SST which allows the ex-

perimentalist to quickly determine partial information about Û without the need

for two photon measurements. This protocol, iterative SST (iSST), uses single

photons (or bright light) and an iterative normalisation procedure to determine

the amplitudes |Û |2.
The protocol works by noting that the matrix of single photon count rates

Rj,k is given by R = D2
O|U |2D2

I , where D2
I and D2

O are diagonal matrices and

|U |2 is a doubly stochastic matrix1. Sinkhorn’s theorem [189] states that any

matrix of nonnegative entries can be decomposed into this form using the Sinkhorn-

Knopp algorithm [190], thus we obtain |U |2 from R. The algorithm proceeds by

successively normalising the columns, then rows of R until convergence and is

proven to converge under the condition that R has total support. Intuitively

this procedure works by iteratively constraining the normalisation condition (all

rows and columns must be normalised) on the underlying count rate matrix until

convergence. We tested the convergence speed with m = 10 numerical simulations,

finding that after just 10 iterations the reconstructed amplitudes were 10−6 away

from the true amplitudes, and after 50 iterations the error was 10−15.

Although the protocol does not recover phase information it is possible that for

a limited number of small, sparse or highly structured circuits, |U |2 is sufficient to

determine salient information about the circuit (beamsplitter ratios, phase shifter

settings etc).

1That is, a square matrix of nonnegative real numbers whose rows and columns sum to one.

93



4. Hardware Characterisation

j
1 2111

1

21

11k

j
1 2111

1

21

11k

j

time 67. 93.

(a)

(b) (c)

775 nm 810 nm

0

0.28

-6-4-20246

0

1.

-6-4-20246

Figure 4.3: Iterative SST (a) The time evolution of light injected into the central

mode of a CCW. This evolution can be simulated by either varying the optical path

length, or varying the wavelength of incident light. (b) Reconstructed |Û(t)|2 via iSST

at 775 nm and (c) 810 nm shows time evolution. To quantify this a model of the CCW

Hamiltonian is optimised with respect to |Û(t)|2 to determine t, the results of which are

displayed in (a).

4.5 iSST Implementation

Iterative SST was used to reconstruct the 21-mode array of continuously coupled

waveguides (CCW) described in Section 3.5.2. To obtain Rj,k bright laser light

from a tuneable laser source was injected into modes k whilst monitoring the

output modes j with kHz response photodiodes. The power matrix was then fed

into the iSST protocol to determine |Û |2.

The unitary describing the CCW is generated by a nearest neighbour Hamilto-

nian, where the effective time evolution t is proportional to the optical path length

z as shown in Fig. 4.3(a) (see Section 3.4.2 for a derivation of this from the modal

coupling equations). As the velocity of light in a medium with refractive index n
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is given by v = c/n (where c is the speed of light in vacuum), the time evolution

is t = nz/c. Whilst z cannot be varied2, due to dispersion effects n can by tuning

the wavelength of incident light. Hence the time evolution of the system can be

simulated by varying the wavelength of light.

The speed at which iSST can be implemented allowed the reconstruction of

|Û(t)|2 for a number of time steps, two of which are shown in Figs. 4.3(b,c) where

the time evolution can clearly be seen. A model of the CCW Hamiltonian is then

optimised to find t at different wavelengths, which is also shown on Fig. 4.3. Mul-

tiple reconstructions of such a large waveguide system is made possible precisely

because of the speed at which iSST can be implemented. Achieving similar re-

sults via full SST would require a complete reconstruction of the phases totalling

760 two photons experiments over 39 different inputs. With a single input taking

∼ 1/2 day this would take ∼ 1 month

In this vein let us compare experimental resources for SST and iSST respec-

tively: SST requires a source of indistinguishable photons (although this can be

replaced with coherent light and a randomised phase [191, 192]) and single photon

detection (such as single photon avalanche photodiodes), totalling O(£103). In

contrast iSST requires coherent laser light and bright-light photodiodes totalling

O(£10). This fact, coupled with the rapid speed at which iSST can be performed,

might make it preferable for certain applications — see Table 4.1 for a comparison.

Resource SST iSST

Output U |U |2

Source Indistinguishable photons Coherent laser light

Detection Single photon counting Photodiode

Cost O(£103) O(£10)

Time O(1 day) O(1 second)

Table 4.1: Comparison of resources for SST and iSST.

2Unlike in Meinecke et al. [172] where time evolution is simulated by CCW’s of varying length.
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4.6 Error propagation

A desirable property for any tomographic technique is robustness to experimental

errors, so even in the presence of noise an accurate representation of the underlying

experiment can still be recovered. To analyse the effect of noise on the reconstruc-

tion procedures we perform a Monte Carlo analysis whereby each element of Rj,k

and Vg,h,j,k is multiplied by (1 + X) where X ∼ N (0, δ) (i.e. a Gaussian centred

on 0 with standard deviation δ) hence δ is the noise parameter. We perform

1000 reconstructions for a given δ and take the mean circuit fidelity defined as

the distance FC = Tr(|U †.U ′|2)/m between the reconstructed unitary U ′ and the

intended unitary U . This has the operational meaning as the average output state

fidelity for a given process U ′ over all possible single photon input states (i.e. the

probability of getting a +1 outcome when projecting onto the desired state).

Choosing m = 10 modes we vary the noise δ ∈ [0, 0.5] plotting FC(δ) for SST

and iSST in Fig. 4.4(a). At a noise level of just δ = 10% we observe a circuit

fidelity of FC = 0.788 and 0.792 for SST and iSST respectively, and for δ = 30%

observe FC = 0.527 and 0.593; implying our reconstruction methods are highly

sensitive to noise (although we note in the extremum, δ > 10%, iSST is more

robust).

The natural question is where exactly does this sensitivity comes from? We

identify three possible sources of reconstruction error: erroneous amplitudes α,

phases φ or signs |φ|. To analyse this we define the following metrics for the

distance between amplitudes and phases of the the reconstructed unitary U ′ =

τ ′j,k exp[iφ′j,k] and the ideal unitary U = τj,k exp[iφj,k]:

Dα = 1/m2
∑

j,k

|τj,k − τ ′j,k|/Max(τj,k, τ
′
j,k), (4.22)

Dφ = 1/m2
∑

j,k

1/π[Max(φj,k, φ
′
j,k)−Min(φj,k, φ

′
j,k)] mod 2π, (4.23)

D|φ| = 1/m2
∑

j,k

1/π[Max(|φj,k|, |φ′j,k|)−Min(|φj,k|, |φ′j,k|)] mod 2π. (4.24)

The amplitude distance Dα is the mean normalised L1-distance between all
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Figure 4.4: SST error analysis. (a) A comparison of reconstruction fidelity FC as

a function of simulated experimental noise δ on a m = 10 mode unitary, for SST (blue)

and iSST (red) . Each point was generated from 1000 Monte-Carlo experiments. Inset,

the mean distance Dα between reconstructed amplitudes and ideal amplitudes. (b) A

comparison of Dφ for phases φ and signs |φ|. Error bars are omitted for clarity, but

included in Table 4.3.

amplitudes, and the phase distance Dφ is the mean normalised distance between

two unit vectors at angles φ and φ′ with a common axis (i.e. Dφ(0, π) = 1).

In Figs. 4.4 we plot these distances as a function of noise. There are two

points to note: first, from Fig. 4.4(a) inset, iSST amplitude reconstruction is more

robust to noise, and as phase reconstruction depends on amplitudes this in turn

filters through to an increased accuracy in both phase and overall fidelity. Second,

from Fig. 4.4(b), for both reconstruction techniques Dφ > D|φ| implying that the

magnitude of the phase is nearer than the total phase. The only way this can

occur is due to an erroneous sign flip. Due to noise, the sign of a reconstructed

phase gets flipped and this error propagates when that phase is used as reference

in subsequent reconstructions. We can thus think about mitigating this error

propagation by utilising some of the unused entries in Vg,h,j,k to error correct the

reconstruction.
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Figure 4.5: Error corrected SST. (a) Defining an entry {j, k} to be positive fixes

the columns and rows with which all other signs are calculated by. If an erroneous sign

flip occurs in one of these reference columns (rows) it will propagate across the entire

row (column). (b) Error corrected SST (eSST) defines multiple support entries, and

performs majority voting on the multiple reconstructed sign matrices. (c) Numerical

results for eSST with five supports, nine supports and SST and iSST for comparison.

Each point was generated from 1000 Monte-Carlo experiments and errors are included

in Table 4.3.

4.7 Error corrected SST

We introduce the error corrected SST formalism (eSST) by noting that the key step

in the reconstruction of phases is in defining a single reference phase to be positive.

This defines the columns and rows with which all other phases are determined by,

thus if an error occurs in one of these entries it will propagate to multiple entries

[see Figure 4.5(a)]. Note however this choice of reference phase is arbitrary, so other

reference phases (we term ‘supports’) can be used to corroborate the reconstructed

signs.

In particular for the m = 10 mode case we define a cross of five support phases

so as to minimise the possible distance between entries [see Figure 4.5(b)]. We then

build a matrix of reconstructed signs for each of these five support phases then
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perform a majority voting on each entry to determine the final signs. During this

process we also reconstruct five phase matrices so therefore take the final phase to

be the mean of these for added robustness.

We find at δ = 10% and 30% a circuit fidelity of FC = 0.872 and 0.693 [see

Fig. 4.5(c)], which is a maximum of 17% increase in reconstruction fidelity over

SST and a 10% over iSST. As a final test we increase the number of supports to

nine, but observe only a small increase (< 3%) suggesting that for this size matrix

we are near the limit of what we can error correct using redundancies. A numerical

comparison of all results and errors is given in Table 4.2 and Table 4.3.

An n column error correction protocol requires (m− 1)2 + n(m− 2)2 − n two-

photon measurements, so is efficient in n. The error model presented thus far

is completely general, assuming nothing about the experimental apparatus. An

interesting research line is understanding the limitations of this error model, and

if a more appropriate error model exists, whether error correction protocols can

be constructed to make use of this knowledge.

4.8 Concluding Remarks

In this chapter we have presented a series of efficient characterisation techniques,

which designed for linear optics, uses knowledge about the device to significantly

reduce the size of the characterisation problem. Each technique is tailor made to

suit the experimentalists needs, be it for rapid partial characterisation or accurate

full characterisation; in the lab the experimentalist must make a judgement about

which is more appropriate.

For any quantum technology to have a hope of scaling, efficient ‘hardware level’

characterisation techniques are essential for feeding into next generation device de-

signs. Other platforms have spent significant resources in precisely understanding

device level errors [76] and LOQC must deliver similar analysis. Our results form

a small part of this picture, and other techniques will be necessary for machine

level characterisation of integrated single photon sources [193] and single photon

detectors [21].
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Noise δ SST iSST eSST-5 eSST-9

0. 1. 1. 1. 1.

0.05 0.87 0.845 0.924 0.931

0.1 0.788 0.792 0.872 0.896

0.15 0.715 0.735 0.82 0.853

0.2 0.656 0.693 0.795 0.812

0.25 0.591 0.648 0.751 0.772

0.3 0.527 0.593 0.693 0.718

0.35 0.464 0.552 0.635 0.653

0.4 0.392 0.486 0.568 0.598

0.45 0.344 0.441 0.506 0.535

0.5 0.309 0.4 0.452 0.474

Table 4.2: Numerical results for SST reconstruction circuit fidelities, generated from

1000 Monte Carlo experiments with applied noise δ.

Noise δ 1σ SST 1σ iSST 1σ eSST-5 1σ eSST-9

0. 0. 0. 0. 0.

0.05 0.168 0.222 0.169 0.165

0.1 0.175 0.212 0.194 0.181

0.15 0.181 0.215 0.213 0.194

0.2 0.182 0.203 0.195 0.202

0.25 0.172 0.194 0.207 0.206

0.3 0.151 0.184 0.206 0.205

0.35 0.139 0.169 0.188 0.198

0.4 0.111 0.148 0.174 0.182

0.45 0.092 0.129 0.153 0.161

0.5 0.077 0.111 0.132 0.141

Table 4.3: One standard deviation of numerical results presented above.
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Verifying Quantum Complexity

Statement of Work

The work presented in this chapter was published in Carolan et al. Nat. Pho-

ton. 8 621 (2014) [194]. The project proposal for using special-case classically

tractable but non-trivial photon statistics as a verifier for boson sampling came

from A. Laing, who supervised the project. I developed these ideas and anal-

ysed experimental data along with A. Laing, P. Shadbolt, J Meinecke, N.Russell,

and J. Matthews. I performed the experimental implementation of these ideas

and the additional idea to use bunching statistics to determine the distinguisha-

bility of photons (based on Spagnolo et al. [195] but proposed independently by

myself). I developed the state-sifting proposal with A.Laing, which I also imple-

mented experimentally. The quantum walk device was fabricated by collaborators
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at the University of Twente, and the random unitary device was fabricated by the

commercial organisation LioniX. Finally, this project took place after a two-year

period that began with building the multi-photon source and included a series of

tests for devices that were found to operate below performance threshold. These

tests (supervised by A. Laing) were performed largely by myself but served as an

effective preparation stage for the verification work that followed.

5.1 Introduction

In the previous chapter we introduced the necessary photonic components for linear

optical quantum computing (LOQC), but here we bring this hardware together and

present a linear optical processor (LPU). The combination of high efficiency photon

source, complex waveguide structures and multi-channel single photon detection,

results in the generation of large scale quantum photonic states which could provide

a near-term route to outperforming classical machines.

With up to five photons in 21 modes we generate states with Hilbert spaces

of up to 50, 000 dimensions. The comparatively low number of events we observe

in this state space is indicative of the task of verification as quantum simulators

scale in size. In general these quantum machines won’t be performing clear com-

putational tasks which can be efficiently verified, so alternative techniques must be

developed to assess the performance of the machine. In this chapter we review the

computational complexity of rudimentary linear optical systems, and develop a

toolbox of experimentally motivated in situ verification protocols; for a particular

class of linear optical simulator, a ‘boson sampler’. Whilst formally unverifiable,

these techniques leverage the experimentalists knowledge of the system to achieve

efficient assessment
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5.2. Quantum Supremacy

5.2 Quantum Supremacy

If the goal of quantum computer science, as is often claimed, is to outperform

a classical computer, to achieve quantum supremacy [196]; in moments of quiet

introspection the honest quantum computer scientist should ask herself two ques-

tions:

1. Why are we doing this? The super-polynomial advantage a quantum com-

puter would offer has the potential to change many aspects of human understand-

ing; from studying phase transitions in quantum many body systems [197], to

calculating quantities in quantum field theory [198, 199], to providing us with

fundamentally new physics. Yet there is a deeper reason we strive for quantum

supremacy. A quantum machine that outperforms a classical machine tells us

something fundamental about nature. It makes clear, perhaps even defines, the

gap between the quantum and classical world.

2. How near are we? This is crucial in driving both financial investment (and

hence experimental resources) and focusing theoretical efforts. Consider this in the

context of integer factorisation (Section 2.5). The factoring world record is RSA-

768 [200]: A 768-bit (232 decimal digit) number, which took a cluster of a few

hundred PC’s running the fastest known classical factoring algorithm — number

field sieve [60, 201] — approximately 2 years (1500 CPU-years). How long would a

quantum computer running Shor’s algorithm take? In Fig. 5.1 the computational

run times for both a classical computer running number field sieve and a quantum

computer running Shor’s algorithm are plotted on a log-log scale; the respective

exponential and polynomial scaling lines can clearly be seen.

Using the modular exponentiation routine of Beckman et al. [203] factoring an

N -bit number requires 73N3 quantum gates and 5N + 1 qubits. For N = 768, the

overhead is 33 billion gates and 4000 logical qubits, not including error correction1.

Which, with an optimistic clock speed of GHz, gives a run time of ∼ 30 s. However,

the record number of qubits to date is 14 [204]. This thus raises the question what

1Include error correction, these numbers get multiplied by ∼ 103 [75].
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Figure 5.1: Quantum and classical integer factorisation. A comparison of the

run times for a quantum computer running Shors factoring algorithm (solid lines) ver-

sus a cluster of computers running the best known classical factoring algorithm (dashed

lines). Note the importance of clock speed; a kHz quantum computer provides no ad-

vantage over current classical computers for problems with less than a year run time.

Taken from the thesis of Rodney Van Meter [202].

can we do with todays or tomorrows resources and technologies to outperform a

classical computer?

This resource counting exercise becomes all the more pertinent in the context of

photonics. A single silicon wafer can contain billions of transistors2, implying on-

chip linear optical elements have the potential to be relatively cheap. The bottle

neck, however, occurs with single photon sources; the record number of photonic

qubits is eight [129, 130], owing to the difficulty of inducing photon-photon inter-

actions. This problem affects linear optical quantum computing (LOQC) two-fold:

2Intel’s Broadwell-U processor contains 1.9 billion transistors in a 133 mm2 area using 14 nm

transistor technology [205]. The smallest known virus is 17 nm in diameter.
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first in the generation of photons (see Section 3.2.1), and second in implementing

two qubit gates (see Section 2.6.5).

If the major experimental challenges for LOQC are single photon sources and

entangling gates, is there anything we can do in the near term to achieve quantum

supremacy which relaxes these constraints? In the following we review a classically

intractable algorithm, native to linear optics, which does precisely that.

5.3 Quantum Complexity in Linear Optics

Following in the vein of Deutsch (Section 2.5) let us formally express the notion of

quantum supremacy by extending the Church-Turing thesis to a statement about

physics:

“All computational problems that are efficiently solvable by realistic

physical devices, are efficiently solvable by a probabilistic Turing ma-

chine.”

Scott Aaronson [22]

The extended Church-Turing thesis (ECT) is a statement about what is effi-

ciently computable within the laws of physics. If there existed physical systems

which solved problems that could not be efficiently solved on a probabilistic Turing

machine, the ECT would be false. Couched in these terms it seems a universal

quantum computer, running for example Shor’s algorithm, unequivocally sinks the

ECT, but the issue is more subtle than that.

Whilst we strongly believe there to be no efficient classical algorithm for fac-

toring, the existence of one would not cause significant disruption to our under-

standing of computational complexity. Moreover, breakthroughs in number theory

during the early 1990’s have lead to remarkable sub-exponential ‘sieve’ algorithms

for factoring [60, 201]; and it is not yet proven we won’t see further breakthroughs.

A final point: the ECT is a statement about what we can physically build. We

105



5. Verifying Quantum Complexity

need to go into the lab and demonstrate a large scale, classically un-simulatable

machine. Whilst error correcting codes tell us this is in principle possible, there

is no guarantee that as of yet undiscovered physics prevents the construction of

large scale quantum systems.

5.3.1 Boson Sampling

“. . . proving a quantum systems computational power by having it factor

integers encoded in binary is a bit like proving a dolphins intelligence

by teaching it to solve arithmetic problems. Yes, with heroic effort, we

can probably do this, and perhaps we have good reasons to. However,

if we just watched the dolphin in its natural habitat, then we might see

it display equal intelligence with no special training at all.”

Aaronson and Arkhipov [22]

Designed for linear optics, with no requirement for quantum logic gates, qubit

entangling operations, or number resolved photon detection, boson sampling [22] is

a quantum protocol that has been developed as a rapid route to challenge the ECT

and demonstrate that quantum physics can be harnessed to provide fundamentally

new and non-classical computational capabilities.

Based on the foundations of computer science, boson sampling is a mathemati-

cal proof (using plausible conjectures) that a many-boson state, when acted on by

a large random linear optical circuit, will give rise to a probability distribution that

cannot be efficiently sampled by a classical algorithm. At the heart of this proof

is the fact that many photon quantum interference is governed by a classically

intractable matrix function — the permanent.

The Permanent

The permanent is similar in nature to the determinant, but with each negative term

in the expansion taken as positive. Recalling from Section 2.6.6, the permanent
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for a n× n square matrix A is given by

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i) (5.1)

where the sum runs over all elements σ of the symmetric subgroup Sn, that is the

n! permutations of (1, 2 . . . n). For example if

A =


a1,1 a1,2

a2,1 a2,2


 (5.2)

perm(A) = a1,1a2,2 + a1,2a2,1, (5.3)

and so on for larger matrices. Whilst prima facie analogous to the determinant,

it has radically different computational properties. The determinant, although

when naively defined has n! terms, can be calculated in time O(n3) via certain

decompositions of A (such as LU, or QR). Such decompositions, in general, do not

exist for permanent calculations.

Whilst the permanent had been discussed at least a century before [206, 207],

it was in 1979 that Valiant’s seminal work [208] showed calculating the permanent

of a (0,1)-matrix (that is ai,j ∈ {0, 1}) is #P-complete. #P is the class of counting

problems in NP, and asks the number of accepting paths for a Turing machine

running in polynomial time. Formally:

A function f : {0, 1}* → N is in #P if there exists a polynomial

p : N → N and a polynomial-time Turing machine M such that for

every x ∈ {0, 1}*, f(x) =
∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣ [49]

Take a prototypical problem from NP: the travelling salesman problem. The

NP problem asks “are there any Hamiltonian paths with cost less then 50” while

the corresponding #P problem asks “how many Hamiltonian paths have cost less

then 50”. Immediately #P is at least as hard as NP (if you can count how many

paths accept, you can certainly find a single accepting path), but to understand

how much harder we must first generalise P and NP into the polynomial hierarchy

(PH).
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If problems in NP have the form “does there exist an n-bit string x such that

f(x) = 1?” (where f is a polynomial time computable function), we can include

another quantifier “does there exist an x such that for all y f(x, y) = 1?” to

define NPNP, that is is an NP machine with an NP oracle. NP = Σ1P is the first

level of PH and NPNP = Σ2P is the second; PH is the union ΣkP over all integers

k. Maintaining the structure of PH is of fundamental importance to theoretical

computer science and results which lead to a collapse of these levels are seen as

highly improbable. Toda’s theorem shows PH ⊆ P#P [209]. That is the entire

polynomial hierarchy can be solved by a polynomial time Turing machine with a

single call to a #P oracle. This is all the more surprising as certain #P problems

correspond to counting problems in P.

To see this, consider Valiant’s example from above. Notice the permanent

of a (0,1)-matrix A is equivalent to calculating the number of perfect matchings

(i.e. the number of ways to connect two vertices such that no two edges share a

connection) for a bipartite graph G, described by an adjacency matrix A; such

that the set of vertices {x1, x2 . . . xn} and {y1, y2 . . . yn} share an edge between xi

and yj iff ai,j = 1. The clearest non trivial example is an n = 3 matrix, as shown

in Fig. 5.2. Surprisingly, efficient algorithms exist for finding perfect matchings

[210]. So it is easy to find a perfect matching, but incredibly hard to calculate how

many. Intuitively this is because there are O(n! ) matches to count.

Even if we can’t efficiently and exactly calculate the permanent of a (0,1)-

matrix, can we do better than the naive O(n! )? The fastest known exact algo-

rithm for calculating permanents is due to Ryser [211] who in 1963 gave an O(2nn)

algorithm. In 2004 Jerrum, Sinclair and Vigoda [212] showed that if the elements

of A are nonnegative real (which includes a (0,1)-matrix) then a polynomial time

algorithm exists to approximate perm(A) to within multiplicative error. Finally

in 2005 Gurvits [213] gave a polynomial time algorithm to approximate the per-

manent of a matrix with complex entries up to additive error.
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Figure 5.2: Matrix permanents and perfect matching. The number of perfect

matchings for a bipartite graph is equal is to the permanent of its adjacency matrix A.

(a) When A = I, there is only one perfect matching, and when (b) A is a block matrix

of ones there are six.

5.3.2 Photons in modes

Recall from Section 2.6.6, the transition probability for photons propagating though

a linear optical circuit Û is given by |perm(Λ)|2, where Λ is a sub-matrix of Û de-

fined by the input and output modes. Whilst the first mention of bosons and

permanents dates back to the 1950’s [214], the first mention of it in the context of

linear optics is more recent and due to Scheel [86].

The collision free subspace of p-photons in m-modes is a Hilbert space in dmp

— which in the photon number basis reads {|n1, . . . , nm〉} with n1 + · · ·+ nm = p

and ni ≤ 1 ∀ i — with dimension |dmp |=
(
m
p

)
. This means a rudimentary LOQC

defines a probability distribution B, with |dmp | elements each given by the absolute

square of a unique matrix permanent.

If we fix m = p2 then |dp2p | grows exponentially in p [22]. So evaluating B
requires calculating exponentially many, exponentially hard unique matrix func-

tions; hence a classical computer can never efficiently reproduce this entire dis-

tribution. Crucially neither can a rudimentary LOQC. There are exponentially

many elements in B so a LOQC would require exponential time to saturate this

distribution. However, Aaronson and Arkhipov (AA) showed that a rudimentary
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LOQC can efficiently sample from this distribution which cannot be done classi-

cally. Their proof relies on plausible complexity conjectures which we will now

look at in detail.

5.3.3 Complexity Proof

We formalise the boson sampling problem. The input to the problem is a m × p
matrix A, where A is taken from first p columns of a unitary drawn uniformly

from the Haar measure3. Given A, with a basis state S ∈ dmp , let AS be the p× p
sub-matrix obtained by taking si copies of the ith row for all i ∈ [m]. Then B is

the probability distribution over dmp defined as

Pr
dmp

(S) =
|perm(AS)|2
s1! · · · sm!

(5.4)

The goal of boson sampling is to sample from B given A as input.

In theoretical computer science proofs often take the form of modus tollens : “if

A is true, then B is true. We strongly believe B to be false, hence A is false”. The

proof for boson sampling runs similar whereby AA show that a classical machine

which could efficiently (even approximately) sample from B would have severe

consequences for theoretical computer science.

AA’s proof has a number of conceptual steps (summarised in Figure 5.3) and

it is worth familiarising ourselves with them. Their main result is:

Suppose there exists a classical computer that takes as input A and

error bound ε, and that samples from the probability distribution B′

such that ||B′ − B||≤ ε in poly(|A|, 1/ε). Then the |GPE|2± problem is

solvable in BPPNP.

Here |GPE|2± is the problem of calculating to within additive error |perm(X)|2±ε.n!

for a Gaussian matrix X ∼ N (0, 1)n×nC in poly(n, 1/ε, 1/δ) time. The reliance

3The Haar measure samples uniformly from the space of all unitaries. To generate a m×m
Haar random unitary, first generate a Gaussian matrix A ∼ N (0, 1)m×mC , then orthogonalise A

via the GramSchmidt process.
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of Gaussian matrices is important. If submatrices are not Gaussian — perhaps

certain sub-matrices have larger entries — they could be identified by inspecting A.

Gurvit’s algorithm could then be used to evaluate these submatrices, but because

the permanents would be large, the relative additive error would be small, and

B could be efficiently sampled from. The requirement for Gaussian submatrices

prevents this.

The proof so far deals with |perm(X)|2 (the transition probabilities of photons)

but for reduction purposes it is more convenient to deal with perm(X), which is

described by the analogous GPE× problem (with multiplicative error). To that

end AA construct the (highly plausible) permanent anti-concentration conjecture

which if true gives a polynomial time equivalence between |GPE|2± and GPE×
4.

This means a classical boson sampling machine would imply GPE× is solvable in

BPPNP.

Finally, they conjecture that calculating GPE× is #P-hard. In fact this is the

biggest open question in their proof, and they give strong, but not conclusive,

evidence in favour of it. As #P is a counting problem it needs to be couched in

terms of a decision problem which can be done with the class P#P — a classical

machine with a #P oracle. From their main theorem a polynomial time classical

algorithm for approximate boson sampling would imply P#P = BPPNP which from

Toda’s theorem (above), collapses the polynomial hierarchy to the third level.

This is seen as incredibly unlikely as, therefore, is the existence of a classical

boson sampling machine. A summary of the steps and assumptions in their proof

is shown in Fig. 5.3.

Photons in linear optical circuits by their very nature sample from B. So the ex-

istence of a rudimentary LOQC provides incredibly strong evidence for the fallacy

of the ECT. Much stronger than a universal computer running Shor’s algorithm;

a polynomial time factoring algorithm would only change the complexity class for

4An equivalent conjecture has recently been proven for the IQP non-universal model of

quantum computing [215], providing strong evidence for the validity of the permanent anti-

concentration conjecture.
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collapses
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Figure 5.3: Boson sampling flow chart. A summary of the assumptions necessary

to prove Aaronson and Arkhipov’s hardness results. Adapted from reference [22].

a single problem, which from a complexity theoretic perspective is nowhere near

as strong as a collapse of the polynomial hierarchy.

It is precisely because boson sampling does not require measurement and

feedforward that significantly fewer resources are required to achieve quantum

supremacy. The exact number of photons and modes which are intractable to

classical calculation is an open question, but ∼ 20 photons in ∼ 400 modes5 is

often cited which is significantly less than the 106 error corrected logical qubits

needed to beat a classical machine at factoring. Consider evaluating B for p = 20,

m = 400. Ryser’s algorithm uses about 2(p+1)p2 floating point operations to cal-

culate a p× p permanent, so that is 108 floating point operations per permanent.

For a modern supercomputer such as the University of Bristol’s ‘Blue Crystal’

which runs at 200 TFlops6 this takes a fraction of a second (10−6 s); however, it

is |dmp | which provides the significant overhead. In this instance |d40020 |= 1033 and

therefore takes 1020 years to evaluate. In reality an optimised algorithm wouldn’t

calculate all |dmp | elements, but rather use some sampling method such as rejection

sampling; however this back of the envelope calculation provides a heuristic for

the magnitude of the task.

Boson sampling solves a sampling problem rather than a decision problem, as

such it is unclear if can be used for practical computation. However it does tell us

something fundamentally interesting about linear optics which may lead to further,

more practical advances. It was known since KLM [10] that linear optics, with

5AA’s proof requires m = p5, but they conjecture m = p2 suffices.
6Flop = floating point operations per second.
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the addition of measurement and active feedforward, could solve classically hard

problems in BQP. Yet Aaronson and Arkhipov show us that linear optics, without

the highly nonlinear operations of measurement and feedforward, still provides

non-classical computational capabilities. This leaves us with the tantalising ques-

tion regarding the intermediate regime: namely, if we only have a small amount of

measurement induced nonlinearity (pre KLM) can we still solve useful problems

that a classical computer cannot?

Some final remarks regarding the role of experiments. The task of the experi-

mentalist isn’t to try to overturn the Church-Turing thesis. This is is a statement

about asymptotic behaviour and AA have already shown that given the existence

of a LOQC which samples from B, the ECT is false. The task of the experimental-

ist is prove the existence of such a device, and show that photons are truly governed

by matrix permanents as p becomes large. Perhaps nature conspires against us

to build such systems. Perhaps some as of yet undiscovered theory of quantum

gravity prevents large scale bosonic interference. The only way we can ever know,

is to get in the lab and build it.

5.3.4 Related work

Aaronson and Arkhipov’s initial proposal in 2010 ignited a flurry of experimental

efforts, with groups from Oxford [23], Brisbane [24], Vienna [25] and Rome [26]

performing small-scale (p = 3, 4 , m = 5, 6) boson sampling experiments, demon-

strating non-interacting bosonic transition probabilities are in fact governed by

matrix permanents. Crucially these realisations are made possible by the advances

in integrated photonic technology (see Section 3.4).

Proposals have suggested [216] and experimentally demonstrated [217] using

Gaussian input states to overcome probabilistic sources, or multiplexed schemes

using time-bin encoded photons in a fibre loop to reduce source and circuit over-

heads [218] (although resilience to loss remains an open question). There have

been proposals to use dispersive optics to access a high dimensional unitary [219]
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or even non-interacting bosonic architectures other than photons, such as the lo-

cal transverse phonon modes of trapped ions [220, 221]. Even though the original

proof deals with the approximate case, a series of papers have looked at the effect

of errors in boson sampling experiments; from the effect of loss and mode mismatch

[222] to the presence of circuit imperfections [223].

With the rapid advance in both experimental and theoretical work, it is not

optimistic to predict an experiment that within the next five years can start to

challenge classical machines. As we strive to reach this goal we are faced with an

immediate question: how will we know when we get there?

5.4 Verification of Quantum Complexity

You’ve just ordered the newest and tastiest ‘Norwegian Jarlsberg’ from the cheese

shop. It’s sold as the butteriest, richest Jarlsberg on the market and when it arrives

you want to verify the cheese shop did in fact send you the Jarlsberg you ordered.

Now, there are tests you can do before you even eat it. You can check the colour

of the cheese, inspect the texture, you can smell the nutty flavours. The aggregate

of all these tests give you confidence this was in fact the cheese you ordered, and

based on this you eat it.

The problem is the same in computing: if a machine purports to run an algo-

rithm, under certain conditions it suffices to check the output to that algorithm

(i.e. eat the cheese), namely, by definition, when the problem is in NP. If however

the problem is outside of NP, the output cannot be efficiently verified (i.e. you can’t

fit the cheese in your mouth) and other techniques must be used to give circum-

stantial evidence: pulling the hard disk out, checking the motherboard, running

test computations you know the answer to.

In the context of quantum computation, that means a quantum computer

running Shor’s factoring algorithm, can also be efficiently verified by checking the

solution. We can also think about this in terms of the output distribution that is

generated; Shor’s algorithm creates an exponentially large probability distribution
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with individual peaks at highly regular intervals that facilitate the solution to the

factoring problem.

In contrast, because boson sampling relates to #P, it is not clear that similarly

useful structure exists in B, with formal verification likely to be impossible. In

short: how do you verify the output to a counting problem unless you go ahead

and count the accepting paths for yourself?

The correct operation of Shor’s algorithm is verified independently of the physi-

cal platform of the universal quantum computer on which it is run. However, boson

sampling is native to linear optical experiments, allowing us to exploit experimen-

tal methods and fundamental properties of linear optics to develop procedures that

provide strong evidence that the system is functioning properly.

In the following we present a series of experimentally motivated machine level

verification techniques that make use of the physical phenomena themselves. Whilst

formal verification is believed to be impossible, we propose techniques that provide

circumstantial evidence of computational complexity, by availing the experimen-

talists information about the system.

5.4.1 Experimental Verification

We present two broad approaches to efficient verification. Firstly, we demonstrate

techniques which rule out various known tractable distributions which when sum-

mated provide counterfactual evidence for correct operation. Specifically we look

at a proposal by Aaronson and Arkhipov [224] which rules out sampling a compu-

tationally trivial distribution [225]. Whilst this tells us we are not doing something

trivial, we determine a more experimentally motivated route to incorrect operation

is the unwanted introduction of distinguishabilty between photons, which destroys

quantum interference [92]. We therefore propose and demonstrate a protocol which

rules out the distribution of distinguishable photons.

Secondly, we propose the method of finding configurations of optical circuits

that engender large-scale, ordered, photonic quantum interference, to produce an
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5. Verifying Quantum Complexity

efficiently predictable structure in the probability distribution of possible detection

events. With large scale single-photon and multi-photon interference verified with

predictable multimode correlations, the system is then reconfigured to implement

a random unitary operation as required for the algorithm. The only assumption

made is that quantum mechanics holds and the system maintains correct operation

as the circuit is continuously reconfigured.

In these latter experiments, we observe and exploit a regular structure in the

quantum probability distribution generated by a circuit of continuously coupled

waveguides, which arises from a phenomenon related to boson bunching, which we

term bosonic clouding. This describes the increased tendency of indistinguishable

photons to cluster in different but nearby modes, in a superposition around two

separate locations, when compared to distinguishable photons. Our observation of

this basic behaviour of particles is of fundamental interest, moreover the emergence

of bosonic clouds provides a way to predict multimode correlations in the transition

from the classical to the quantum regime without having to calculate the matrix

permanents.

We experimentally implement our verification methods with 3, 4, and 5 photon

ensembles propagating in arrays of up to 21 waveguides. We demonstrate that with

relatively few events, quantum complexity can be verified in > 50, 000 dimensional

Hilbert spaces, exemplifying the enormity of the challenge faced by verification

techniques as experiments grow in size and complexity

Experimental resources

All experiments presented use the hardware shown in Fig. 5.4. We use the multi-

photon source described in detail in Section 3.3, and two waveguide circuits which

we label as RU and QW. The RU chip is the passive nine-mode silicon nitride

linear optical processor described in Section 3.5.3, comprising directional couplers

and fixed phase shifts fabricated to realise a random unitary. The QW chip is

the planar array of 21 evanescently coupled single mode waveguides fabricated in

silicon oxynitride and described in Section 3.5.2.
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Ti:Saph

(c) Random unitary

(b) Quantum walk
TCSPC

Fibre splitters

16 SPADs

Downconversion

(a) Photon source (d) Detection system

Attenuator

Upconversion
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PMF

Figure 5.4: LPU for experimental verification. Experimental setup to generate

(a), interfere (b,c) and detect (d) single photons. (a) Two pairs of 780 nm photons are

generated from a multi-photon source and injected into either (b) the QW chip, or (c)

the RU chip. Outgoing photons are coupled from the chip either directly to 16 single

photon avalanche diodes (SPADs) (d), or via a network of fibre splitters. Detection

events are time-correlated and counted using a 16-channel time-correlated single photon

counting system (TCSPC). A full description of hardware is given in Chapter 3.

5.5 Uniform Distribution

The task of verification in linear optics was first brought to light by Gogolin et al.

[225] who proved that in the black box setting, boson sampling with an optical

network described by a random unitary matrix is operationally indistinguishable

from the case where detection events are drawn from an unbiased or flat probability

distribution F (i.e. uniformly from the basis dmp ); with discrimination between the

two only becoming possible after an exponential number of trials.

Their proof captures the essence of verification whereby an experimentalist

with no information about a system requires exponential time to verify its quan-

tum nature. Simply put: a black box claiming to be performing boson sampling

(that is a quantum optics setup costing O(£100, 000) and requiring O(months) of

experimental effort) cannot be distinguished from the single line of Mathematica

code:
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Figure 5.5: Verification against the uniform distribution. (a) For each event a

value of R∗ is recorded from the detection sub-matrix A. (b) The expected probability

density function for values of R∗ averaged over the Haar measure, with sub-matrices

chosen from B (blue line), and the uniform distribution (black line). The bars show a

histogram of R∗ values from experimental three photon data using the RU chip. (c)

Dynamic updating using Bayesian model comparison for confidence in sampling from

boson sampling distribution, rather than the uniform distribution.

RandomVariate[DiscreteUniformDistribution[1,Binomial[m,p]]].

If however, as AA show [224], the experimentalist has some information about

the system — namely the unitary description of the device — efficient verifica-

tion can be achieved. Note from Chapter 4, even if a priori unknown, Û can be

efficiently accessed and is therefore a reasonable piece of information. Their ap-

proach is to construct a discriminator which, whilst efficiently accessible, yields

different results when sampled from B and F . Specifically, the discriminator R∗ is

the product of squared row 2-norms of the p× p sub-matrix A that describes the

transformation of p photons through the circuit.

Concretely, for every detection event we write down the submatrix consisting

of the p input columns and p output rows to give a matrix A ∈ Cp×p, then for each

row calculate Ri = |ai,1|2+|ai,2|2+ · · · + |ai,p|2 and take the product R∗ =
∏p

i Ri,

normalising such that E[R∗] = 1 [shown in Fig 5.5(a)]. Aaronson and Arkhipov
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prove that for m ≥ p5.1/δ with sufficiently large p, and with probability 1−O(δ)

Pr[R∗ ≥ 1|B]− Pr[R∗ ≥ 1|F ] ≥ 1

9
. (5.5)

In other words, with high probability F and B have constant variation distance,

thus on average R∗ will be larger when sampled from B than F (see Fig 5.5(b),

solid lines). The intuition being that larger |perm(A)|2 values are more probable

(by definition), and R∗ is sufficiently correlated with |perm(A)|2, but efficiently

computable in O(p2).

5.5.1 Experiment

We demonstrated this protocol using the three photon postselected state |111〉
injected into modes {1, 2, 3} of the m = 9 mode RU chip whose unitary description

was reconstructed in Section 4.3. Over a period of five days we collected 434 three-

fold detections events, and hence 434 values of R∗, a histogram of which is shown

in Fig. 5.5(b) together with numerical plots of expected bosonic (B) and flat (F)

distributions obtained by averaging over 105 Haar random unitaries. From this we

can see that our results are at least consistent with sampling from B.

To quantify this performance, we use Bayesian model comparison to update in

real time our relative confidence that the samples were drawn from B rather than

F . The choice of a Bayesian approach is motivated by the ability to perform real-

time analysis. Since the computational cost of the experiment is mostly determined

by the number of detection events, we want to be able to make the most of each

event.

We have determined numerically (by averaging over 105 Haar random unitaries)

that for the case of p = 3 photons and m = 9 modes:

P ((R∗ > 1) |B) = 0.631,

P ((R∗ < 1) |B) = 0.369,

P ((R∗ > 1) |F) = 0.355,

P ((R∗ < 1) |F) = 0.645.
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5. Verifying Quantum Complexity

Given these probabilities we can use the value of R∗ computed from a detection

event to update our confidence that the device is sampling from B rather than F
according to Bayes’ theorem

P (H|R∗) =
P (R∗|H)P (H)

P (R∗)
,

where for H we substitute either B or F . Our prior is P (B) = P (F) = 0.5.

Figure 5.5(c) plots confidence that we are sampling from B not F . After only

12 three-fold detection events a confidence level of 90% that sampling is not from

F is achieved, which rises to 1 − 10−35 by the end of the experiment. This rapid

speed at which confidence is achieved demonstrates the power of Bayesian model

comparison, a technique we put to use for six photon verification in Section 6.7.1.

These results demonstrate experimental events depend non-trivially on the cir-

cuit configuration. However, in reality this is rarely a concern. In the following we

construct a protocol to verify against a more experimentally relevant distribution.

5.6 Classical Distribution

A more physically relevant probability distribution to rule out which is classi-

cally simulatable, is that which is generated when photons become distinguishable,

which we label as C. This distribution can be efficiently simulated in a number

ways: either by noting from Section 5.3.2 that the matrix has entirely real values

so the permanent can be efficiently evaluated by the algorithm of Jerrum, Sinclair

and Vigoda [212]. Or more simply, by noting that a sample can be taken by p

separate single photon experiments (since they photons do not interfere), which

takes time O(p).

While R∗ discriminates between B and F , it does not discriminate between B
and C. Indistinguishability among photons may be verified at source [92], yet the

circuit may introduce distinguishability through decoherence, dispersion and other

extra unwanted degrees of freedom such as polarisation. We therefore implement

a scalable method to verify that photon indistinguishability is maintained during
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Figure 5.6: Verification against the classical distribution. (a) Indistinguishable

photons (b) Distinguishable photons, (c) Probability of finding p photons at p detectors

(that is, no bunching) for quantum (blue) and classical (red) particles. Lines are the-

oretical asymptotic values with the constraint m = p2, and histograms (inset) are for

theoretically simulated data for up to five photons in 25 modes. Values calculated from

our experimental data are shown by the circles in the histograms for three photons in

nine modes.

propagation through the circuit, based upon the question:

Given a p-photon input state in p modes (one photon per mode) what

is the probability P (p-fold) of observing a p-fold detection event (i.e.

finding p photons at p detectors)?

The intuition is that p-fold detection is less likely for indistinguishable photons

due to bosonic bunching [Fig. 5.6(a,b)]. This is formalised by Arkhipov and Ku-

perberg [226] whereby a simple counting argument shows that for p indistinguish-

able photons in m modes, when averaged over the Haar measure, PQ(p-fold) =

|dmp |/|Dm
p |=

(
m
p

)/(
m+p−1

p

)
. To extend their result we use a similar argument to

show that in the case of distinguishable photons PC(p-fold) =
(
m
p

)
p!
/
mp, as in

the classical birthday paradox.
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5. Verifying Quantum Complexity

The bosonic birthday ‘paradox’ occurs whenm� p2 and PC(p-fold) ≈ PQ(p-fold)

[195]. If however m = p2 then PC(p-fold) > PQ(p-fold), as can be seen in

Fig. 5.6(c). In the limit of large p, PQ(p-fold) = 1/e and PC(p-fold) = 1/
√
e.

The protocol requires N trials of p-photon input states, which gives rise to M p-

fold detections, allowing the comparison M/N to the analytic values of PQ(p-fold)

and PC(p-fold). Clearly as P (p-fold) does not vanish, this test is scalable.

5.6.1 Experiment

The non-deterministic nature of the down-conversion process, along with circuit

loss, makes directly knowing the number of input trails N , and hence P (p-fold)

problematic; however the method of Spagnolo et al. [195] allows it to be estimated.

Firstly, by delaying two arms of the down-conversion source via motor controlled

actuators at the collection stage we can introduce temporal distinguishability be-

tween the photons to collect MC classical events. Next, we maximise the in-

distinguishability and for the same amount of time collect MQ quantum events.

Assuming the number of events that entered the device were the same in both

cases (confirmed by the total number of single photon events in both experiments)

we can estimate the ratio MQ/MC = PQ(p − fold)/PC(p-fold). By using single

photon experiments to calculate PC(p-fold) we can then estimate PQ(p-fold).

We found PQ(p-fold) = 0.450 ± 0.028 (error calculated assuming Poissonian

counting statistics) compared to an expected value 0.509, while the deliberate

introduction of (temporal) distinguishability among photons gave PC(p-fold) =

0.680 ± 0.0002 compared to an expected value of 0.691. Using the numerically

determined probability density functions shown in Fig. 5.6(c), we estimate the

probability (over Haar-random unitaries) that quantum data is the result of dis-

tinguishable particles to be 3 × 10−3, while the probability that classical data is

the result of indistinguishable particles is 2× 10−2.
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5.7. Predictable Quantum Correlations

5.7 Predictable Quantum Correlations

Taken together, the tests in Fig. 5.5 and 5.6 provide circumstantial evidence that a

boson sampling machine is operating according to the laws of quantum mechanics,

with non-trivial dependence on circuit parameters, and exhibiting quantum inter-

ference. However, we now present a method that gives even stronger evidence for

correct operation. Consider implementing a highly structured unitary that pro-

motes all of the essential physical features of boson sampling, including single pho-

ton and large-scale multimode multi-photon interference, but where significantly

large parts of the probability distribution of p-fold detections can be determined ef-

ficiently, classically, without calculating matrix permanents. After experimentally

confirming correct multimode correlations, the optical circuit is continuously tuned

to realise a unitary operation, such as a Haar random unitary, with classically

intractable matrix permanents that produce classically unpredictable multimode

correlations. The reasonable assumption is that correct operation is maintained

during the tuning. Such a protocol could be realised by highly reconfigurable cir-

cuitry (see Chapter 6). In this proof of principle experimental demonstration —

at the classically tractable scale where correct sampling from both probability dis-

tributions can be verified — we physically swap between circuits. The structured

unitary operation we choose is the QW chip of continuously coupled waveguides

[192] which exhibits bosonic clouding.

5.7.1 Classical Walks

The classical random walk can be most intuitively understood by considering a so-

called walker evolving on a D vertex one-dimensional graph via a discrete Marko-

vian process. The walker starts in the middle of this graph then flips a coin. If it

lands heads she moves right, tails she moves left. If she repeats this N times the

probability to be at a given position d is given by

P (d) =
1

2N

(
N
N+d
2

)
, (5.6)

123



5. Verifying Quantum Complexity

which after many flips, can be approximated as a Gaussian with standard deviation

σC ∝
√
N . Random walks have been used to describe phenomena in a variety

of fields; from physics (Brownian motion, the motion of gas molecules during a

diffusion process, thermal noise phenomena) to genetics and economics [227, 228].

For our purpose it will be beneficial to extend this analysis to the case of

continuous time classical Markov chains, where we follow the approach of Farhi

and Guttman [229]. Here the walk takes place without a coin, entirely in the

position space over some D-dimensional vertex set V . With the walker in some

initial state ~p = (p1, p2, . . . , p|D|), a classical probability distribution over V , she

evolves according to a matrix M with elements Mi,j that describe the probability

to transition from vertex i to j in a given time step. After the first time step the

probability the walker is at the ith vertex is given by

pt+1
i =

∑

j

Mi,jp
t
j (5.7)

thus the entire state of the walker becomes

~pt+1 = M~pt. (5.8)

To make this process continuous we allow transitions to occur at any time, and

replace M by the generator H, which describes the probability per unit time γi,j

of hopping from vertex i→ j such that

Hi,j =





−γi,j if i 6= j and i and j connected

0 if i 6= j and i and j not connected

diγi if i = j

where di is the connectivity of vertex i. To describe the evolution of our walker

note that in analogy to (5.7)

dpi(t)

dt
=
∑

j

Hi,jpj(t) (5.9)

which has the solution ~p(t) = exp(−Ht)~p(0).
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5.7.2 Quantum Walks

Farhi and Guttman’s insight was to replace the classical probabilities ~p with quan-

tum probability amplitudes |ψ〉 =
∑

i αi |i〉 over the orthonormal basis of vertices

|i〉, the generator H with a Hamiltonian Ĥ and the classical Markov process with

the unitary evolution Û(t) = exp(−iĤt) . In this ‘quantum walk’ scenario they

find examples of graphs which are traversed exponentially quicker than their clas-

sical counterpart. This observation of computational advantage has since ignited

fields from computer science [230–232], to biology [233, 234]; and motivated ex-

perimental realisations in a variety of physical platforms including: trapped ions

[235, 236], optically trapped neutral atoms [237], NMR qubits [238] and proposals

with superconducting systems [239, 240].

Photons, due to their low decoherence properties and ease of manipulation are

particularly amenable to the implementation of non-interacting quantum walks.

Quantum walks have been realised in bulk optics using beamsplitters [241], beam

displacers [242], and fibre loops [243, 244]; but perhaps the most natural route to

achieve large scale complexity is via integrated optics. The inherent phase stabil-

ity of integrated optics has been used to realise quantum walks with directional

couplers [19], but a more robust fabrication method and one which directly maps

to our above analysis is via continuously coupled waveguides [245].

If we consider the case where Ĥ is a nearest neighbour Hamiltonian describing

the one dimensional graph

Hi,j =





−γi,j if i = j ± 1

diγ if i = j

0 otherwise

then the evolution on a single site is governed by

− i∂ |i〉
∂t

= diγ |i〉 − γi,i+1 |i+ 1〉 − γi,i−1 |i− 1〉 . (5.10)

In comparison light evolving through weakly coupled nearest neighbour single
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mode waveguides obey [245]

− in
c

∂â†i
∂t

= βiâ
†
i − Ci,i+1â

†
i+1 − Ci,i−1â†i−1, (5.11)

where βi is the propagation constant for waveguide i, Ci,j is the coupling constant

between adjacent cites i and j and â†i is the bosonic creation operator acting on

mode i. Note the similarity between equations (5.10) and (5.11) is reminiscent

of Feynman’s quantum simulator [246]; if we can engineer a system of continu-

ously coupled waveguides we can simulate a continuous time quantum walk [see

Fig. 5.7(a)].

Evolving the single particle state via Ĥ gives rise to the archetypal quantum

walk ballistic propagation (Fig. 5.7(b), blue). However this can be entirely de-

scribed via wave mechanics, and hence simulated on a classical computer [247].

To see true dynamics which cannot be efficiently simulated classically we need to

introduce multiple walkers.

5.7.3 Multi-photon Quantum Walks

Multi-photon quantum walks propagate multiple photons and measure correlated

detection events at the output [192]. This added complexity gives rise to a much

richer set of dynamics, and effectively simulates a single walker on a higher dimen-

sional graph [18, 248]. Multi-photon quantum walks have been used to observe

fermonic evolution [19, 171], phenomena such as Anderson localisation [249] and

the coherent time evolution of walkers [172].

Much like in boson sampling these transition probabilities are given by matrix

permanents of sub-matrices of Û . Due to a generalisation of the HOM effect, when

the photons are indistinguishable a highly structured probability distribution is

observed. Specifically, as shown by Peruzzo et al. [18], photons at the output are

found to cluster in nearby locations, a bunching effect7, see Fig. 5.7(c). It is this

structure in the output distribution we wish to use as a verifier.

7A beautiful experiment is reported by Rom et al. [250], whereby the opposite fermionic

anti-bunching effect is observed for a fermionic gas released from an optical lattice.
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Figure 5.7: Continuous time quantum walks. (a) Photons propagating through

an array of continuously coupled waveguides simulate a continuous time quantum walk.

(b) Theoretical simulations of the single photon quantum (blue) and classical walk (red),

measuring the probability to find a photon at waveguide i. (c) The two-photon case

measures the correlated detection probability for photons in waveguides i and j. (c)

Similarly, the three-photon quantum walk gives the probability (proportional to the

radius of sphere) for photons in waveguides i, j and k. In (c,d) the bosonic clouding

effect can clearly be seen.

5.7.4 Bosonic Clouding

Bosonic clouding describes an increased tendency for multimode correlations with

indistinguishable particles clustering, in superposition, around two separate lo-

cal groups of modes, when compared with distinguishable particles. To use this

phenomena as a verifier we first wish to observe this effect for the three-particle

case.

We inject three photons into modes {10, 11, 12} of the 21 mode QW chip.

This larger circuit makes detecting the entire |D21
3 |= 1771 possible three-photon

detection events (including cases with more than one photon at a single detector)

challenging. To detect a large proportion of this space we use fibre splitters and

multiple detectors to achieve nondeterministic number resolved photon detection.
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Figure 5.8: The absence and emergence of multimode correlations in the

form of bosonic clouds in three-photon correlation cubes for a 21 mode quan-

tum walk. The radii of spheres centred at coordinates (i, j, k) are proportional to the

probability of finding three photons in output modes i, j and k respectively. We tune

between indistinguishable (blue) and distinguishable (red) photons by introducing a time

delay between them. These data are: (a), Experimental nine mode random unitary with

indistinguishable and (b) distinguishable photons. (c), Bosonic clouds from experimental

21 mode quantum walk unitary with indistinguishable and (d) distinguishable photons.

(e), Theoretical nine mode random unitary with indistinguishable and (f) distinguish-

able photons. (g), Theoretical bosonic clouds from 21 mode quantum walk unitary with

indistinguishable and (h) distinguishable photons. The experimental data (top row) has

been corrected for detector efficiencies and the theory has been filtered to show only

events that were experimentally measured, which is the main reason for the apparent

asymmetry between the pair of boson clouds.
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Which along with multiple measurements in different configurations allow us to

access 524/1771 possible events.

We use eight separate measurements, corresponding to different configurations

of the detection apparatus. Writing the number of detectors d connected to an

output port i as di, these detection configurations can be described as:

M1 = {3132333435};M2 = {36373839310};M3 = {311312313314};M4 = {315316317318};

M5 = {1123152719211113215117219};M6 = {2113251729111213115217119};

M7 = {12241628110212114216118220};M8 = {22142618210112214116218120}.

Where M1–M4 address the main diagonal of the correlation matrix i = j = k. The

probability distribution is reconstructed by summing count rates over all measure-

ment settings, and then compensating for detection efficiency based on a model of

the measurement apparatus.

For the case of indistinguishable photons we collect 3870 three-photon detec-

tion events which is sufficient to saturate and reproduce the QW chip probability

distribution, shown in Fig. 5.8(c). We then repeat this for distinguishable pho-

tons by temporally delaying two of the three photons and collect 5588 events,

shown in Fig. 5.8(d) We found a statistical fidelity Fs =
∑

i

√
pexpi pthi between

the normalised theoretical pthi and experimental pexpi probability distributions of

F qs = 0.930±0.003 and F cs = 0.961±0.002 for the indistinguishable and distinguish-

able case respectively. Error bars are calculated by propagating Poissonian count

rate errors. The deviation from unit fidelity can be attributed to unwanted tem-

poral distinguishability among photons and higher order terms (see Section 3.3).

Bosonic clouding behaviour can be clearly seen for indistinguishable photons

in Fig. 5.8(c). That is, photons cluster around the main diagonal line of the corre-

lation cube, where probabilities exactly on this line correspond to full bunching of

all three photons in the same mode. Two clouds have formed at separate locations

in the cube centred on modes 6 and 16. If one photon is detected in the locality

of mode 16 (for example), the remaining two photons have a higher probability

of being correlated to this event and also detected around mode 16. In contrast,
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when temporal distinguishability is introduced between all photons [Fig. 5.8(d)],

quantum interference is destroyed and the clouds dissipate: there is now a higher

probability that the two remaining photons will be found away from the modes

local to mode 16.

For further comparison, we have also presented all possible 84 (non-bunched)

three-photon correlated detection probabilities in the RU chip in Fig. 5.8(a,b,e,f).

We note that the clouds observed in Fig. 5.8(c) are absent in the RU chip for

both indistinguishable [Fig. 5.8(a)] and distinguishable photons [Fig. 5.8(b)]; the

correlation cubes do not reveal any discernible structure. Here, we found a fidelity

between our experiment and theoretical model of F qs = 0.939 ± 0.010 and F cs =

0.970± 0.007, for indistinguishable and distinguishable photons, respectively.

5.7.5 Efficient Verification

Let us formalise this notion of clouding and construct an efficient metric with which

we can verify and quantify multimode correlations in quantum walk experiments.

The metric works by assigning a value −1 ≤ c ≤ +1 to each trial: +1 is awarded

when all p photons are found in either the upper or the lower half of the chip

[Fig 5.9(a)]; −1 is awarded if exactly p/2 photons are found at both sides of the

chip [Fig 5.9(b)]; and intermediate values are linearly interpolated for approximate

clouding [Fig 5.9(c)]. More precisely, with t and b the number of photons found,

respectively, in the top and bottom half of the chip, ci = 2|(t− b)/(t+ b)|−1 for

the ith trial and the clouding metric C = 1/n
∑

i ci is calculated as the average over

all n trials. To make our metric suitable to standard detectors that do not give

information on the number of photons received, here C does not include bunching

terms (when more than one photon arrives at a single detector) which we expect

would enhance the clouding metric.

Exact numerical simulations for up to p = 7 photons in p2 modes confirm

that C efficiently reveals clouding, discriminating between indistinguishable and

distinguishable photons. Approximate Monte Carlo numerical simulations support
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Figure 5.9: Bosonic clouding metric. (a) If all photons are maximally clouded

and in the same half C = +1 is awarded and if (b) photons are not clouded and equally

distributed C = −1 is awarded. (c) This function is continuous allowing for approximate

clouding.

the efficiency of the clouding metric C for up to p = 14 photons in p2 modes.

Four Photon Sift

We evaluated this metric with three, four and five photons. In the four photon

case we inject one photon per mode into the central {9, 10, 11, 12} waveguides. As

discussed in Section 3.2.3, unlike the three photon case an efficient postselection

technique to isolate |1111〉 does not exist with just two down-convertors. However,

we have developed a technique to effectively sift this state from the entire four

mode down-conversion state. To see this recall the (unnormalised) four mode

down-conversion state in the four photon subspace is

|Ψ4DC〉 = |Ψ1
DC〉 ⊗ |Ψ2

DC〉 (5.12)

= ei(φ1+φ2+φ3+φ4) |1111〉

+ e2i(φ3+φ4) |0022〉+ e2i(φ1+φ2) |2200〉 , (5.13)

where φi is an unknown phase on mode i due to the path length difference from

crystal to chip. The density matrix for this state is
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Figure 5.10: Four photon sifting. Half and quarter wave plates are placed in one

arm of the four mode down-conversion source, and data summed, to force the maximally

mixed input state ρmix.

ρDC = |Ψ4DC〉 〈Ψ4DC| (5.14)

=




1 ei(φ1+φ2−φ3−φ4) e−i(φ1+φ2−φ3−φ4)

e−i(φ1+φ2−φ3−φ4) 1 e−2i(φ1+φ2−φ3−φ4)

ei(φ1+φ2−φ3−φ4) e2i(φ1+φ2−φ3−φ4) 1


 . (5.15)

Consider applying a phase θ to mode 1 so the entire phase on that arm is now

θ + φ1 [see Fig. 5.10], we represent this state as ρDC(θ). This can be achieved by

inserting half (H) and quarter (Q) wave plates in that mode in the configuration

Q(π/4)H(θ/4 + π/4)Q(π/4). It is straightforward to verify that

ρmix = ρ(0) + ρ(π/2) + ρ(π) + ρ(3π/2) (5.16)

= |1111〉 〈1111|+ |0022〉 〈0022|+ |2200〉 〈0022| , (5.17)

hence summing data at θ = {0, π/2, π, 3π/3} yields the same results as a maximally

mixed state. We then separately input the two-mode state on modes {1,2} and

{3,4}, yielding data for ρ2200 = |2200〉 〈2200| and ρ0022 = |0022〉 〈0022|, which can

be subtracted from the ρmix data to give |1111〉. A few remarks: First, this method

does not scale efficiently in photon number, and second neither would we want to;

the coherences are postselected, and not useful for any kind of processing further

down the line. However, for our purpose, it serves to test our clouding metric

132



5.7. Predictable Quantum Correlations

with added complexity. Finally, we note the phases φi in general are a function of

time. However, our scheme yields statistics for the ρmix independent of the speed

of phase fluctuation, provided φi is not correlated with the phase θ.

Results

The mean values of C for the three-, four- and five-photon experiments are shown

in Fig. 5.11(c-f), for indistinguishable and distinguishable photons, alongside ideal

theoretical distributions, given the same number of events. Experimental imper-

fections result in non-ideal values of C, so we calculate the change in clouding

between distinguishable and indistinguishable photons, ∆C = CQ − CC , as a wit-

ness for the emergence of clouds.

For p = 3 photons we find ∆C = 0.138 ± 0.014, compared to a numerically

determined value of 0.169± 0.014, see Fig. 5.11(c). For p = 4 photons we measure

1016 out of a possible 10626 four-fold, registering 50, 000 events over a period of∼ 1

week, as shown in Fig. 5.11(a,b). The fidelity between experimental and theoretical

probability distributions, for both indistinguishable and distinguishable photons,

was found to be FQ = 0.971 ± 0.001 and FC = 0.978 ± 0.0004. We evaluated the

clouding to be ∆C = 0.137 ± 0.008 compared to a numerically determined value

of 0.145± 0.008, as shown in Fig. 5.11(d). The deviation from theory is primarily

due to the complexity of the sifting procedure (experimental fluctuations over long

data runs), but the emergence of bosonic clouding can clearly be seen.

During the course of this data run our detection system registered 217 five-

fold detection events, originating from a six-photon down-conversion event and a

lost photon (so the state was partially mixed). For p = 5 photons in m = 21

modes the Hilbert space dimension is |D21
5 |= 53, 130. Due to this vast Hilbert

space size, and small number of detection events, no single event was recorded

more than once exemplifying the challenge of verification as quantum systems

grow. In this case, full probability distributions are meaningless and fidelities

cannot be evaluated. However our metric still found a statistically significant

separation of ∆C = 0.137± 0.041 compared to a numerically determined value of
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∆C = 0.106± 0.041, shown in Fig 5.11(e).

Finally clouding for p = 3 photons in the random unitary is shown for compar-

ison in Fig. 5.11(f), with ∆C = −0.014± 0.029 compared to a numerical value of

0.044± 0.028, which is consistent with the absence of clouding.

5.8 Concluding Remarks

We have shown how to exploit the intrinsic physical properties of a quantum sys-

tem, configured to a verifiable mode of operation, to assess its level of performance.

If the experimentalist possess no information about this system, this cannot be

done efficiently. If however the experimentalist possess some knowledge about the

system; such as the circuit describing the operation (in the case of verifying against

a uniform distribution), the class of particles (in the case of verifying against a

classical distribution) or an expected probability distribution (in the case of verify-

ing a multi-photon quantum walk), efficient verification can be achieved. Positive

assessment is then cited as evidence that the system is performing correctly when

configured to an unverifiable mode of operation, such as the implementation of a

quantum algorithm that is mathematically unverifiable.

As experiments grow in complexity, it is likely new error sources will emerge

which can rise to classical tractability. We therefore expect new machine level

verification protocols to appear. One such example, for which there are solid

analytical results, is the predictable probability distribution due to quantum in-

terference in a Fourier transforms [251]. We examine this protocol in the following

chapter. Whilst we have demonstrated the efficacy of this approach in the context

of boson sampling, machine level verification techniques like these are likely to find

application in other analogue quantum simulators which exhibit their own physical

traits, such as large scale quantum annealing machines [252, 253], ion traps with

hundreds of spins [254], and fermionic gasses which exhibit anti-bunching [250].
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Figure 5.11: Experimental clouding results. (a) Experimental data for four

indistinguishable photons into QW, with black points showing 1016 of the possible 10626

detection patterns, ordered by descending theoretical probability (red points). Data

circled in blue identify cases of partial or full bunching, which are not included in the

clouding metrics here. Error bars are calculated from Poissonian statistics. Here, the

input state includes unwanted terms with more than one photon per mode. (b) Unwanted

parts of the input state are sifted out, so that it approximates to one photon per mode.

In (c-e) we show the results from evaluating our clouding metric C for p = 3, 4, 5 photons.

Experimental points with horizontal error bars are shown in blue for indistinguishable

photons, in red for distinguishable photons, and theoretically reconstructed distributions

from the same number of samples are shown as solid lines. For 3 and 4 photons, the

increase in C is statistically significant. The separation is reduced for the partially mixed

state of 5 indistinguishable photons across four modes, yet still observable with only 217

counts. (e) Theoretically predicted fall in clouding (blue dotted line) when one of the 5

photons becomes distinguishable. In (f) we show results from the same test for 3 photons

in a 9-mode random unitary and observe no significant levels of clouding as expected,

showing that our test is sensitive to the implemented unitary.
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Computers can do lots of things. They can add millions of num-

bers together in the twinkling of an eye. They can outwit chess

grandmasters. They can guide weapons to their targets. They

can book you onto a plane between a guitar-strumming nun and

a non-smoking physics professor. Some can even play the bongos.

Thats quite a variety!

Richard Feynman

6
Universal Linear Optics

Statement of Work

The work presented in this chapter was published in Carolan et al. Science 349,

711 (2015) [255]. The universal linear optical device was conceived by A. Laing who

supervised the project, and designed and fabricated by N. Matsuda and colleagues

at Nippon Telegraph and Telecom Corporation. The majority of experimental

work (characterisation, calibration, data taking) was due to myself, C. Harrold

and N. Matsuda. The characterisation protocol was proposed by myself and N.

Russell. The phase accuracy benchmarking protocol was proposed and analysed by

myself, as were the boson sampling procedures. The complex Hadamard matrices

were proposed and developed by E. Mart́ın-Lopez and A. Laing, and analysed

by myself. The six photon verification experiment was proposed by myself and A.
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Laing and analysed by N. Russell. Preceding the device presented here, myself and

C. Harold packaged and tested a universal silicon nitride device (not presented)

which was judged to be below performance threshold.

6.1 Introduction

From smart phones to swiss army knifes, multifunctional technologies have had

profound impact on society. Since the time of Turing, universal machines have

enabled both conceptual and practical advances: for the former, the concept of

universality has provided us with a deep understanding of the relationships be-

tween algorithms, allowing the discovery of new protocols and applications. For

the latter, programmable machines place ultimate power in the hands of the pro-

grammer. They liberate. It is almost inconceivable to imagine society, industry

or science without programmable computers; and there are very few technologies

with which we can make such bold claims.

We have so far seen how a linear optical processor (LPU) equipped with pas-

sive waveguide technology, can be harnessed to explore the boundaries of quantum

complexity. In this chapter we show that with the addition of active reconfigurabil-

ity we can significantly increase capabilities of LPU’s. Specifically we demonstrate

a single reprogrammable optical circuit that is sufficient to implement all possi-

ble linear optical protocols up to the size of that circuit. Our six-mode universal

system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-

optic phase shifters integrated into a single photonic chip that is electrically and

optically interfaced for arbitrary setting of all phase shifters, input of up to six

photons, and their measurement with a 12-single-photon detector system. We

term this system a ‘universal LPU’. The versatility such a system affords, and the

fidelity with which it operates, allows us to achieve orders of magnitude increase

in quantum control and complexity compared with previous demonstrations.

We describe the key technological developments which has made possible such

a device in Section 6.3, and in Section 6.4 and 6.5 propose and demonstrate full
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characterisation and benchmarking procedures. We perform one hundred different

boson sampling experiments in Section 6.6, and extend our analysis of verification

techniques by implementing newly proposed verification protocols on up to six

photons in Section 6.7. Crucially these protocols are all implemented on the same

device pointing the way towards a truly verifiable analogue quantum simulator.

Finally, in Section 6.8 we use multi-particle quantum interference to distinguish

six-dimensional complex Hadamard operations, including newly discovered exam-

ples, where full classification remains an open mathematical problem. The results

presented required reconfiguration of this single device to implement ∼ 500 exper-

iments.

6.2 Universal Circuits

We’ve seen throughout this thesis that linear optical circuits are described by uni-

tary operators. Here we ask: what class of circuits give rise to unitary operators?

Does each gate, algorithm or unitary we wish to implement require distinct cir-

cuitry? The answer to this question is emphatically no. A single photonic device,

configured in such a way is sufficient to realise all possible linear optical unitaries

up to the size of the circuit. The original proof was given in 1994 by Reck et al.

[27], but here we give a physically intuitive proof of this theorem. Not only is this

of fundamental interest, but it will also be the method with which we programme

circuits onto our device.

To find the circuit for an arbitrary m ×m unitary Û , we can imagine the m-

mode linear optical box implementing Û . The aim is to build a new circuit Û ′

such that Û ′Û = Î, and hence Û † = Û ′. In other words, if we can build Û ′ we’ve

found the circuit for Û1.

To do this consider injecting single photons into the first mode of the linear

optical box, this generates an m-dimensional output vector Û |1〉 = |ψ1〉, which

1Technically, the circuit for Û† has been found, but this is easily fixed by taking the conjugate

transpose of Û in the first instance.

139



6. Universal Linear Optics

Um x m

|1i

| mi

|1i

| m�1i

|2i |2i

|m � 1i
| 2i

|m � 1i

… …

… …

…

…

D†
1 D†

2 D†
m-1

↵i,j �i,j

M†

1,1

M†

1,2

M†

1,m-1

M†

2,1

M†

2,m-2 M†

m-1,m-1

M  =i,j

Figure 6.1: Building a universal circuit. To find the circuit for any m×m unitary

Û , photons are injected into the first mode of the unitary, generating a state |ψm〉, and

a diagonal array D̂†m of MZI-shifters M †1,i is configured to output the state |1〉. This is

repeated for photons injected into the second mode (blue), up until the m − 1th mode

(red). The final unitary is implemented by D̂1D̂2 · · · D̂m−1.

corresponds to the first column of Û . Let us examine |ψ1〉: first, it has m − 1

amplitude and m−1 phase components (due to normalisation and a global phase)

hence

|ψ1〉 = a1,1e
iϕ1,1 |1〉+ a1,2e

iϕ1,2 |2〉+ · · ·+ (1−
m−1∑

i=1

a21,i) |m〉 . (6.1)

So what type of circuit can give rise to |ψ1〉? Simply, a diagonal array of MZI’s

and phase shifters where each element of the diagonal is described by

M̂(φ, α) = P̂ (φ)ÛMZI(α). (6.2)

For clarity we recall equations (2.45) and (2.50):

P̂ (φ) = eiφ/2


e

iφ/2 0

0 e−iφ/2


 ; ÛMZI(α) = ei(α+π)/2


sin(α/2) cos(α/2)

cos(α/2) − sin(α/2)


 ,

(6.3)
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hence

M̂(φ, α) = ei(α+π)/2


e

iφ 0

0 1




sin(α/2) cos(α/2)

cos(α/2) − sin(α/2)


 (6.4)

= ei(α+π)/2


e

iφ sin(α/2) eiφ cos(α/2)

cos(α/2) − sin(α/2)


 (6.5)

To generate |ψ1〉, the first MZI-shifter M̂1,1(φ1,1, α1,1) is configured to send |a1,1|2

of power into the first mode then apply a phase ϕ1,1 to that mode. In the param-

eterisation of (6.2) we set

α1,1 = 2 sin−1(a1,1); φ1,1 = ϕ1,1 − (α1,1 + π)/2 (6.6)

Next, we repeat this process for M̂1,2 such that |a1,2|2 of the remaining 1− |a1,1|2

power is directed into the second mode, along with a phase shift ϕ1,2. Specifically

we set

α1,2 = 2 sin−1 (a1,2/(1− a1,1)) ; φ1,2 = ϕ1,2 − (α1,1 + α1,2 + 2π)/2 (6.7)

and repeat this process until

M̂1,m−1M̂1,m−2 · · · M̂1,1 |1〉 = |ψ1〉 . (6.8)

There is a subtlety here when using directional couplers, whereby the phase on

the final mode |m〉 is non-zero, depending in some non-trivial way on the phases

{α1,i}. To correct for this all phases {φ1,i} are shifted relative to this final mode.

Specifically, defining the erroneous phase to be ϕ′1 the corrected phases become

{φc1,i} = {φc1,i +ϕ′1}. We note this is a technicality when using directional couplers

(and not intrinsic to the proof) but is important, in practice, when finding circuits.

The diagonal array in (6.8) is also described by an m×m unitary matrix

D̂1 = M̂1,m−1M̂1,m−2 · · · M̂1,1. (6.9)

such that

D̂1 |1〉 = |ψ1〉 . (6.10)
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Take this new unitary, do the conjugate transpose, and place it after Û so the

entire system becomes D̂†1.Û [Fig. 6.1, black]. Conveniently, this has the structure

of an m×m unitary with the top left element equal to 1, and all other elements in

the corresponding row and column equal to zero. To see this note a photon input

into the top mode must only output from the top mode

D̂†1Û |1〉 = D̂†1 |ψ1〉 (6.11)

= |1〉 (6.12)

where the last line uses (6.10). So

D̂†1Û =




1 0 · · · 0

0
... Ûm−1

0




(6.13)

and we repeat this process, but this time with D̂†1Û :

1. Inject photons into the second mode

2. Generate m− 1 dimensional vector D̂†1Û |2〉 = |ψ2〉

3. Build the diagonal array D̂2 such that D̂2 |2〉 = |ψ2〉

4. Repeat with the new unitary D̂†2D̂
†
1Û

After m− 1 iterations we are left with D̂†m−1D̂
†
m−2 · · · D̂†1Û = Î and therefore

Û = D̂1D̂2 · · · D̂m−1. (6.14)

Up to undetected output phases, this means that anm-mode circuit as per Fig. 6.3(a)

with 1/2(m2 −m) MZI-shifters and full control over all m2 −m phase shifters, is

sufficient to realise all possible linear optical protocols up to the size of the circuit.

We say this circuit is universal for linear optics.
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Figure 6.2: Reconfigurable waveguide geometry. (a) A germanium doped silica

core is fabricated with a silica cladding onto a silicon substrate, and thin film tantalum

nitride thermo-optic heaters are deposited on top. Heat isolation grooves are fabri-

cated to reduce thermal cross talk and power consumption. (b) MZI geometry. See

Section 3.5.1 for further details.

6.3 Reconfigurable LPU

Realising such a scheme requires sub-wavelength stability and high fidelity compo-

nents to support both classical and quantum interference — possibilities opened up

by integrated quantum photonics [11–19]. The platform with which we realise this

scheme is silica-on-silcon, whose waveguide geometry is shown in Figure 6.2. The

circuit itself is made with planar lightwave circuit (PLC) technology [166, 256, 257],

and comprises an array of 30 silica-on-silicon waveguide directional couplers with

30 electronically controlled thermo-optic phase shifters, to form a cascade of 15

MZIs across six modes. The advantage of interfacing silica based devices with a

multi-photon source is the low insertion and propagation losses; we measure the

mean insertion loss (fibre to fibre) averaged over all modes to be 2.4 dB (42%) —

significantly lower than the 13 dB (95%) reported for the passive LPU.

The key step in realising a fully reconfigurable LPU is having a robust and

accurate modulation technique. We achieve this via 30 thin-film tantalum nitride
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(Ta2N) thermo-optic heaters fabricated on top of the circuit measuring 1.5mm ×
50µm. To calculate the temperature change for a 2π phase shift we use the fact

that the phase shift ∆φ = ∆n × k0 × L hence ∆n = 2π/(2π/808nm × 1.5mm) =

5.4 × 10−4. The thermal coefficient of Silica at room temperature (20 ◦C) is

dn/dT = 1 × 10−5 ◦C−1 thus ∆T = (dn/dt)−1 × ∆n = 54 ◦C, which at room

temperature requires 74 ◦C to give a 2π phase shift. To calculate the resistance R of

each heater note the resistivity of Ta2N
2 is r = 400µΩ cm−1, using R = (rL)/(WT )

with a heater thickness of T ≈ 1µm gives R ≈ 100Ω, matching values measured

in the lab.

The fundamental principle governing thermo-optic phase shifts is the conver-

sion of electrical energy into heat energy (see Section 3.4.3 for an atomic expla-

nation). To estimate the switching time t for a 2π phase shift, we first calcu-

late the energy required to raise the temperature from the mass of the heater

(m = ρLWT , where density ρ = 16 g mm−3) the specific heat capacity of Ta2N

(C = 0.14 J g−1 ◦C−1) and the change in temperature ∆T as E = m×C ×∆T =

9 mJ. Applying a power P ≈ 0.8 W (the observed power necessary for a 2π

phase shift) for time t requires energy E = P × t hence the switching time is

t = 0.9× 10−3/0.8 ≈ 10ms.

This back of the envelope calculation serves as a heuristic for understanding the

induced phase shift, but in reality the model is much more complicated than this;

waveguide geometry considerations such as heat insulation grooves and cladding

thickness also affect modulation speeds. Using NTT corporation in house simu-

lation software, we estimate the time required for a 90% temperature change is

1.4ms. Whilst this is relatively slow by telecommunications standard (with typ-

ical switching times > GHz [152]) for our purpose clock speeds are limited by

multi-photon source rates and millisecond switching suffices.

The silica-based waveguide device, multi-photon source, single photon counting

and electrical control are fully interfaced to realise the universal LPU, as shown

2All Ta2N properties in the proceeding calculations are taken from Vishay Intertechnology

Inc. [258].
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in Figure 6.3. Further details of constituent components are given Chapter 3.

6.4 Characterisation

6.4.1 Phase Shifter Calibration

From above, the induced phase shift is approximately proportional to the tem-

perature and hence applied power, so is quadratic in voltage. Therefore each

thermo-optic phase shifter is described by a nonlinear phase-voltage relationship

Φ(V ) = α + βV 2 + γV 3, (6.15)

where Φ is the resulting phase shift due to an applied voltage V and α, β and γ

are real numbers to be determined (with β � γ), which in general vary for each

heater due to imperfections in the fabrication process. The internal phase with at

zero voltage is given by α, the ohmic response by β, and the non-ohmic response

(due to a change in resistance at high temperature) by γ. To determine Φ(V )

we inject heralded single photons into the fundamental TM mode of an isolated

MZI (αi,j) or phase shifter (φi,j) then sweep the voltage 1.8→ 10V producing an

interference fringe given by

C = A−B · cos Φ(V ), (6.16)

where C is the count rate in the bar mode and A and B, along with α, β and γ

are free parameters to be determined via a least squares fitting procedure. See

Figure 6.4 for typical interference fringes.

The arrangement of our device circuitry allows each phase shifter to be inde-

pendently characterised. We first characterise the diagonal α1,j [Fig. 6.4(a)] by:

1. injecting single photons into mode 1

2. measure interference fringe on α1,1

3. set α1,1 = 2π
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6. Universal Linear Optics

Figure 6.3: Universal linear optical processor (LPU). (a) Decomposition of a fully

parametrised unitary for an m-mode circuit to realise any LO operation. Sub-unitaries

Di consist of Mach-Zehnder interferometers Mi,j (MZIs) built from phase shifters (yel-

low) and beam splitters, to control photon amplitudes (αi,j) and phases (φi,j). (b) Multi-

photon ensembles are generated via spontaneous parametric down-conversion (SPDC),

comprising a BiBO crystal, dichroic mirrors (DM) and interference filter (IF); preceded

by a pulsed Ti:sapphire laser and second harmonic generation from a BBO crystal. Pho-

tons are collected into polarisation maintaining fibres and delivered to the waveguide

device via a packaged V-Groove fibre array (VGA). The processor is constructed over

six modes as a cascade of 15 Mach-Zehnder interferometers, controlled by 30 thermo-

optic phase shifters, set by a digital-to-analgoue converter (DAC) and actively cooled by

a Peltier cooling unit. Photons are then out-coupled into a 2nd packaged VGA and sent

to six (or 12 with fibre splitters for single-mode photon number resolving capability)

single photon avalanche diodes (SPADs) and counted using a 12-channel time-correlated

single-photon counting module (TCSPC).

146



6.4. Characterisation

↵1,1

↵1,2

↵1,3

0
2000
4000
6000
8000

0
2000
4000
6000

2 4 6 8 10
0

2000
4000
6000

↵1,1

↵1,2

↵1,3

0
2000
4000
6000

2 4 6 8 10
0

2000
4000
6000
8000

↵2,2

↵2,3

↵2,2

↵2,3

0
4000
8000

12000

2 4 6 8 10
0

4000
8000

12000�1,3�2,3

�1,3

�2,3

co
un

ts
volts

0.97 0.98 0.99 1.
0

2

4

6

Single photon contrast
Fr
eq
ue
nc
y

0.95 0.97 0.99
0

2

4

Two photon contrast

Fr
eq
ue
nc
y

(a)

(c)

(b)

(d)
C = 0.991 C = 0.975

Figure 6.4: Automated LPU characterisation. (a) The diagonal D̂1 is first char-

acterised by sending single photons into mode 1 and measuring interference fringes on

consecutive MZI’s (represented as BS’s) as shown adjacently. (b) All α1,i = π and the

process is repeated for D̂2. (c) Phase shifters φi,j are characterised by setting certain

α = π/2 and measuring interference fringes on larger interferometers. (d) Histograms

of single photon and two-photon interferometric extinction ratio’s. We note that for a

given input, this process is fully automated.

4. repeat for α1,j for j = [2, 5]

completing the characterisation of α1,j. We repeat this procedure for αi,j with

i = [2, 5] by injecting photons into mode i and setting all αi−1,j = π [Fig. 6.4(b)],

thus completing the characterisation of all αi,j. We then characterise φi,5 by:

1. injecting single photons into mode 5

2. set αi,5 = π for i = [3, 5]

3. set αi,4 = π for i = [1, 4]

4. set α2,5, α1,5 = π/2

5. measure interference fringe on φ1,5
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6. repeat for φi,5, with αi,5, αi+1,5 = π/2 and i = [2, 4]

completing the characterisation of φi,5 [Fig. 6.4(c)]. Finally we repeat this pro-

cedure for φi,j with j = [2, 4] by injecting photons into mode j and setting

αi,j+1, αi,j−1 = π, thus completing the characterisation of all φi,j and therefore

all phase shifters.

Once characterised, we tested the stability of the device by setting all heaters to

some nontrivial phase, injected single photons and measured single photon output

fluctuations; observing, over a period of 140 hours, an average power variation of

< 0.1%,

6.4.2 Crosstalk

Crosstalk is an effect whereby the phase of one interferometer is a function of the

phase in another. Many physical processes can give rise to crosstalk, for example

nonlinear effects in silicon such as free-carrier and two-photon absorption [259],

but in glass low nonlinearities make this this effect negligible.

A more relevant source of crosstalk is thermal coupling. Here, the heating of

a waveguide isn’t well localised meaning nearest neighbour MZI’s couple to one

another. This can either be corrected after fabrication or mitigated during design.

In the former you characterise all thermal crosstalk (in fact this can be generalised

to all crosstalk) in a black box scenario and build a model which solves this many-

body problem. The second approach, and the one which we opt for here, requires

fabricating heat-insulating grooves between waveguides [Fig. 6.2(a)]. Not only does

this mitigate thermal propagation it also significantly reduces power consumption

(by up to 80% [166]).

Electrical crosstalk can occur due to coupling between channels in multichannel

voltage supplies which can be caused by a variety of physical processes. In our

case we observed electrical cross talk due certain heaters sharing a common ground.

For small circuits each heater can have its own ground rail, but as circuits become
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more complex, common grounds are inevitable3. When a voltage is applied across

a common ground with non-zero resistance, the ground voltage raises so that any

heater attached to that ground must be supplied with a higher effective voltage to

achieve the desired phase shift. If the ground has very small resistance this effect

is negligible, but in our case we observed ground resistances of O(10 mΩ) which

given our heater resistances required correction.

To do this we characterised all shared resistances and built a model which

calculated the set voltages {V ′i } which yields the actual voltages {Vi} required for

a desired phase shift. Once corrected for no evidence of cross talk, thermal or

otherwise, was observed.

A final correction is applied due to an observed reduction in quantum interfer-

ence at certain points within the chip caused by polarisation rotation. We correct

for this by inserting polarising beam splitters at the output of the chip filtering

out undesired polarisation states.

6.5 Benchmarking

With the device fully characterised we perform benchmarking; implementing pro-

totypical experiments with which we know (in an ideal case) the output, and where

deviations from this output are a metric for the performance of the device.

6.5.1 Classical and Quantum Interference

The calibration procedure itself, Section 6.4.1, provides us with an important

first benchmark. By assessing at the quality of single photon and pair photon

interference fringes we can estimate how well the device supports classical and

quantum interference.

Specifically, we calculate the mean single photon interferometric extinction

ratio C = (Nmax −Nmin)/(Nmax +Nmin), where Nmax and Nmin are the maximum

3See Allman et al. [260] for a solution to this problem in the context of large arrays of

superconducting detectors.
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and minimum count rates for a given interference given fringe, for all MZI’s and

find it to be 20.5 dB (99.1%). We then perform a similar experiment by injecting

indistinguishable pairs of photons, finding the mean two photon extinction ratio

to be 16dB (97.5%), indicating good single photon and two photon operation. A

histogram of these results is displayed in Fig 6.4(d).

6.5.2 Phase accuracy

To determine the typical accuracy in setting a phase we implement a randomized

benchmarking inspired experiment by injecting heralded single photons into mode

1, then setting 100 different vectors ~α1,j = (α1,1, α1,2, α1,3, α1,4, α1,5), chosen from

the Haar measure, to give a mean fidelity F exp between our experimental and

theoretical distributions. We then run a Montecarlo simulation of the experiment

by applying Gaussian noise δφ to each phase shifter and fitting this fidelity Fm as a

function of this noise, giving Fm(δφ). We solve Fm(δφ) = F exp finding δφ = 0.035

rad. This value includes errors caused by the circuit, the control electronics and

the calibration procedure, and therefore provides a useful estimate for our effective

accuracy in setting a phase.

6.6 Boson Sampling

Acting on three-photon ensembles |11, 12, 13〉, our device was programmed to im-

plement 100 different boson sampling routines. Each circuit configuration was

chosen randomly from the Haar measure, which was implemented via a direct

parameterisation of phase shifters. This means the unitary doesn’t have to be

generated first to be compiled onto the circuit, rather on-chip phase settings (α, φ)

can be directly set. In the same way selecting spherical polar coordinates uni-

formly from θ ∈ [0, 2π], φ ∈ [0, π] doesn’t sample uniformly from the surface of a

sphere, sampling phase shifter settings doesn’t draw uniformly from the space of

unitaries. As prescribed in Russell, Laing and O’Brien [261], we draw from the
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probability density functions (PDFs)

Pα = n sin(α/2) (cos(α/2))2n−1 (6.17)

Pφ = 1/2π (6.18)

where n is the row number, with the bottom row (M̂i,5) defined as m = 1 and so

on, as displayed in Fig. 6.5(a).

For each implementation [Fig. 6.5(b)] five minutes worth of detection events

were counted for each of the |d63|= 20 collision free ways in which three photons

can exit the six output ports of the device. Figure 6.5(c) displays a histogram of

fidelities with statistics based on calculations of matrix permanents, with a mean

statistical fidelity Fs =
∑

i

√
pexpi pthi between experimental pexp and theoretical pth

distributions of F̄s = 0.950±0.020§. These results demonstrate the performance of

our LPU over many circuit configurations, randomly and unbiasedly chosen from

the full space of all possible configurations. We also injected ensembles of one and

two photon states |11〉 and |11, 12〉, yielding statistical fidelities (between ideal and

measured probability distributions) of 0.999±0.001 and 0.990±0.007 respectively.

For the three individual boson sampling experiments that produced the highest,

lowest, and mode fidelity, we recalculated the statistical fidelities for the recovered

transfer matrix M (see Chapter 4). This increased the mean statistical fidelity

and reduced the range Fmax
s − Fmin

s from 0.102 to 0.036; implying dialling errors

are non-uniform across the space of unitaries.

6.7 Verifying Boson Sampling

The control our universal LPU affords means we can simultaneously realise boson

sampling protocols and verification procedures on the same device. The zero trans-

mission law (ZTL) [262] predicts that correlated photon detection for most of the

§Throughout this thesis two error analysis methods are used: those for individual fidelities F
calculated by propagating Poissonian count rate errors, and those for mean fidelities F̄ calculated

as 1σF . The bar symbol will be used to denote which method is used.
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Figure 6.5: Universal LPU boson sampling. (a, b) A Haar random unitary can be

directly implemented by choosing beamsplitter reflectivities (or equivalently MZI phases

α (inset 1)), and phase shifter values φ (inset 2) from the probability density functions

in (a). (c) A histogram of measured statistical fidelities for 100 three-photon boson

sampling experiments, with one and two photon histograms inset.

exponentially growing number of configurations is strictly suppressed if the circuit

is set to implement the Fourier transform (FT) on optical modes [Figs. 6.6(a,b)].

This is known because the structure of the FT allows these matrix permanents

to be efficiently evaluated without explicit calculation. Because large scale many-

photon quantum interference is at the core of the ZTL, it has been proposed as a

certificate for the capability of a device to implement boson sampling [251].

The most general form of the ZTL applies to any periodic input state to the

FT matrix [263]. For an p-photon n-periodic initial state

|ψin〉 = |1, n+ 1, 2n+ 1, · · · , n(p− 1) + 1〉 (6.19)

input into the FT (written in the mode number basis where |ij〉 represents the jth

photon in the ith mode), output states |s〉 are suppressed when the sum of the

mode assignment list (i.e. the list of positions of the photons in the output state)

multiplied by n is not divisible by p

mod
(
n
∑

j

sj, p
)
6= 0 =⇒ Prob(|s〉) = 0. (6.20)

For our implementation we input the three-photon periodic state |11, 32, 53〉 into

the FT, so states such as |11, 22, 43〉 — where
∑

j sj = 7, and mod(2 × 7, 3) 6=
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0 — are suppressed ; whilst states such as |11, 22, 33〉 — where
∑

j sj = 6, and

mod(2 × 6, 3) = 0 — are not suppressed. In the collision free subspace, 12 out of

the total of 20 outputs are suppressed, and the experimental violation of the ZTL

is calculated as ν = Ns/N , the ratio of the number of predicted suppressed events

Ns to the total number of events N .

The LPU was programmed to implement 16 examples of the F
(2)
6 (θ1, θ2) two-

parameter set of six dimensional matrices, including F6 (the six dimensional FT),

which occurs at θ1, θ2 = π, 0. Using statistics from three-photon ensembles, the

experimental violation of the ZTL was calculated; the results of which are plotted

in Fig. 6.6(c) alongside the theoretical manifold. The experimental points follow

the shape of the manifold with the minimal violation of the ZTL νmin = 0.319 ±
0.009 occurring when F6 is implemented. The average ZTL violation of the nine

points that are predicted to maximally violate is ν̄max = 0.638± 0.029.

The deviation from νmin = 0 can be attributed to two effects: dialling error,

and imperfect quantum interference. To quantify this we use known source dip

visibilities to build a model of the experiment and calculate an expected violation

in the absence of dialling errors, finding νexpmin = 0.149. We therefore attribute the

deviation from this value as dialling errors.

6.7.1 Six Photon Verification

An essential requirement of boson sampling is that of indistinguishability among

photons. With the LPU set to implement F6, the six-photon state |31, 32〉 was

injected and six-photon statistics were counted with an all-fibre beam-splitter be-

tween each output mode and two single photon avalanche diodes (SPADs) to give

probabilistic number-resolved photon detection over a total of 12 SPADs. While

the complexity of states that are not one-photon-per-mode is less understood, the

input state used here allows us to implement a protocol designed to verify indistin-

guishability among many photons with only a small number of detection events.

Bayesian model comparison (see Section 5.5) was used to update, in realtime,
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Figure 6.6: Universal LPU verification. (a) The F
(2)
6 two parameter (θ1, θ2)

family of 6-dimensional complex Hadamard matrices, and (b) A circuit customised to

implement F
(2)
6 with defining parameters θ1, θ2 explicitly realised. Due to the particular

decomposition of our LPU, compiling F
(2)
6 requires unique phase shift values across the

entire device for each implementation θ1, θ2 ∈ [0, 2π) (c) Three-photon violations (ν) of

the zero transmission law from scanning over F
(2)
6 (θ1, θ2). Experimental points in red

are plotted with the ideal theoretical manifold; black lines are to guide the eye. (d)

Dynamic updating of the confidence that six-photon detection events are sampled from

a distribution of indistinguishable (quantum, blue) or distinguishable (classical, red)

photons.
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Figure 6.7: Complex Hadamard matrices. (a) Two photon correlation manifolds

in F
(2)
6 for the probability of a given detection event [as colour coded in Fig. 6.6(b)] with

experimental points in red. (b) The measured probability for a given detection event

when two photons are injected into an instance of G
(4)
6 and S

(0)
6 , with ideal theoretical

black bars (error bars assume Poissonian counting statistics).

the confidence that events are sampled from a (pre-calculated) quantum prob-

ability distribution (arising from completely indistinguishable photons) or from

a classical probability distribution (arising from completely distinguishable pho-

tons), shown in Fig. 6.6(d). After collecting 15 six-fold coincidence events over a

period of two weeks, a confidence of p = 0.998 is determined that these are drawn

from a quantum (not classical) distribution.

6.8 Complex Hadamard Matrices

The FT and F
(2)
6 are examples in the more general class of complex Hadamard

matrices (CHMs), which are related to mutually unbiased bases [264] and are of

fundamental interest in quantum information theory [265]. CHMs are defined as

N × N unitary matrices with entries of squared absolute value equal to 1/N .

While this definition is straightforward, classification of these matrices is far from
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trivial and is concerned with identifying CHMs that are inequivalent up to pre and

post multiplication with permutation matrices and diagonal unitaries [266]. In the

N = {2, 3, 5} case, all CHMs are equivalent to the respective FT matrix, while for

N = 4 there exists a one parameter equivalence class. Whilst a full classification

of N = 6 CHMs is unknown, it is currently conjectured that the set consists of

an isolated matrix S
(0)
6 which does not belong to any family [267], and a newly

discovered four-parameter generic family G
(4)
6 [268].

In LO experimental implementations, discrimination among CHMs can be ac-

complished via the observation of characteristic patterns of photonic quantum

interference [269–272]. Up until now, these observations have been too experi-

mentally challenging for the six-dimensional case. Here, correlation manifolds of

two-photon detection events are reconstructed by scanning over the F
(2)
6 matrices,

displaying four (out of the 15 sets collected) in Fig. 6.7(a). A mean statistical

fidelity of F̄s = 0.979± 0.007 is found.

Finally, an instance of G
(4)
6 (that is not contained in F

(2)
6 ) and S

(0)
6 is imple-

mented, and predicted characteristic two-photon quantum interference patterns are

observed [Fig. 6.7(b)], with respective statistical fidelities of Fs = 0.986 ± 0.001

and Fs = 0.998 ± 0.001. The intractability of calculating the permanents of cer-

tain CHMs is an interesting research line, as is the possibility of searching for new

CHMs using photonic statistics.

6.9 Concluding Remarks

We have demonstrated how a single universal LPU, equipped with modulation

capabilities, can be rapidly programmed to implement a host of linear optical

protocols; from simultaneous boson sampling and verification procedures, to im-

plementing 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001,

to exploring newly discovered six-dimensional complex Hadamard operations.

The comparable three-photon boson sampling experiment with the passive
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waveguide device described in Chapter 5, took five days. A single experiment here

took five minutes demonstrating the orders of magnitude increase in complexity

and control that low loss, high fidelity universal LPU’s offer.

These results point the way to universal devices with the ability to arbitrarily

“dial-up” operations replacing a multitude of existing and future prototype sys-

tems. In the following chapter we examine this claim in the context of quantum

information processing.
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Quantum Computation with Universal

Linear Optics

Statement of Work

The work presented in this chapter was published in J. Carolan et al. Science

349, 711 (2015) [255]. All data was taken by myself, C. Harrold and N. Matsuda.

The LPU implementation of the KLM gate and BSG was proposed, developed

and analysed by myself, C. Sparrow, and C. Harrold. The loop measurements

were proposed by myself and J.C.F. Matthews, and developed by myself and C.

Sparrow. Process tomography theory was provided by C. Sparrow, as was data

analysis. The project was supervised by A. Laing.
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7.1 Introduction

We have so far demonstrated the high fidelity operation of a universal linear op-

tical processor. A key application of such a device is as a testbed to develop

new protocols, and as a means of testing our known protocols in experimentally

realistic scenarios. We therefore apply our universal LPU to a variety quantum

information processing protocols. We implement heralded quantum logic gates

at the heart of the circuit model of LO quantum computing and new heralded

entangling gates that underpin the measurement-based model of LO quantum

computing, both of which are the first of their kind in integrated photonics. We

demonstrate arbitrary state preparation and measurement, which allows us to per-

form two qubit process tomography on a unheralded CNOT operation, achieving

fidelities surpassing those previously reported. Finally, we use the hardware level

characterisation methods previously presented, to verify these gates independent

of error prone photon sources. These results demonstrate unprecedented control

and performance of a universal quantum device.

7.2 Universal Gate Set

7.2.1 Universal Classical Gates

A key ingredient for the universality of classical computers is the existence of

universal gate sets. A logic gate takes as input binary entries (bits) and conditional

on this input, outputs a new set of bits. This mapping between inputs and outputs

(represented by truth tables, for example Table. 7.1) completely defines the gate.

A computer is said to be universal if it has access to a basic set of gates, a universal

gate set, which can be combined together in such a way as to generate any possible

gate. For a classical computer, a possible universal gate set is AND and NOT.

To see how new gates can be created out of just these two, note we can construct
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A B NOT B AND OR XOR

0 0 1 0 0 0

0 1 0 0 1 1

1 0 - 0 1 1

1 1 - 1 1 0

Table 7.1: Classical logic gates. Single and two bit classical truth truth tables

which take as input bit entries A,B and output a single bit.

OR, in the language of boolean logic1, via the equality X ∨ Y = ¬(¬X ∧ ¬Y ).

If this was all there was to computing it would all be rather boring. However,

the beauty and interest in building computers is that certain gate sets are more

efficient for certain tasks. To see this let us borrow an example from Feynman

[48] and consider the English language. In English we’ve developed the word ‘car’

to refer to the four wheeled metal machine that takes us from A to B. But we

could just as easily imagine a Amazonian tribe who have never come across such

thing. If they wanted to describe a ‘car’ they may have to describe each of the

individual components — the sounds, the textures, the colours — in their own

language; which, whilst doing an equally good job, may well require more words

and be less efficient.

7.2.2 Universal Quantum Gates

In analogy to classical computing, the definition of BQP and hence the possibility

of a universal quantum computer is predicted upon the existence of a universal

quantum gate set [see Table 7.2]. Universal quantum gate sets have been studied

extensively and various sets have been proven, including:

1. The complete set of single qubit gates [U(2)] plus CNOT [273],

2. CNOT, Hadamard and π/8-gate [274],

1Where ∨ = OR,∧ = AND,¬ = NOT.
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A B Î X̂ Ŷ Ẑ CNOT CPHASE

|0〉 |0〉 |0〉 |+〉 |+i〉 |0〉 |00〉 |00〉
|0〉 |1〉 |1〉 |−〉 |−i〉 − |1〉 |01〉 |01〉
|1〉 |0〉 - - - - |11〉 |10〉
|1〉 |1〉 - - - - |10〉 − |11〉

Table 7.2: Quantum logic gates. Single qubit gates take as input qubit B, and two

qubit gates use A and B as control and target respectively.

3. Toffoli and Hadamard2 [275].

Moreover, the Solovay-Kitaev theorem tells us any single qubit gate can always

be efficiently decomposed into a sequence of gates from a finite universal gate set

[276].

With this plethora of gate sets to choose from, one may be forgiven for thinking

we can freely choose any single qubit and two qubit gates to build our quantum

computer — but a word of warning! The beautiful Gottesman-Knill Theorem

[277] tells us that a circuit consisting entirely of Hadamard and CNOT gates

can be efficiently simulated on a classical computer. This means, that large scale

entanglement alone isn’t sufficient for classical intractability.

A final point should be made here that the existence of multiple universal gate

sets isn’t merely some mathematical nicety, but of practical interest as well. It

means that if some physical system can intrinsically perform Toffoli and Hadamard,

but not CNOT, it still has the potential for universality. As we will see much effort

has been spent in showing that linear optics is capable of precisely this.

7.3 Heralded Quantum Logic Gates

Manipulating single photonic qubits is relatively straight forward, relying entirely

on wave interference effects — physics known since the early 19th century. But

notice from the list in Section 7.2.2 that a universal gate set requires two-qubit,

2Or more generally, any basis changing single qubit real gate (which is a lot of gates).
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conditional operations: “If A, do B”. It is precisely the properties which make

photons exceptional single qubit systems (ease of manipulation, robustness to en-

vironmental noise), which makes these conditional operations so problematic. Not

only do they not interact with their environment, photons do not interact with one

another.

Up until 2001 it was widely believed that single photons and linear optical

elements alone, were not sufficient for universal quantum computation. Remark-

ably this all changed when Knill, Laflamme and Milburn (KLM) proved3 it was

possible to induce the necessary nonlinearities for universal quantum computation

via single photon measurement and active feedforward of classical information

[10]. In their scheme they construct a photonic quantum logic gate which works

non-deterministically, but unlike the gate presented in Section 2.6.7 the operation

is heralded ; meaning non-computational ancilla photons are used in addition to

computational photons to signal successful operation of the gate.

A gate which works with probability p, doesn’t sound like much use for large

scale computation. If n gates are required for a calculation, the probability it

succeeds is pn. However, by using the technique of gate teleportation [278], KLM

showed it was possible to perform non-deterministic gates offline, then teleport

the gate, when successful, onto the computational qubits — thus preserving com-

putational photons. The subtlety with the scheme is that in linear optics the Bell

measurements required for teleportation are probabilistic; so KLM’s real break-

through was in constructing a near-deterministic teleportation scheme which uses

n ancillary photons to boost the teleportation probability to n2/(n + 1)2. Using

this technique they prove that scalable, universal linear optical quantum computer

(LOQC) is possible.

3KLM actually set out to prove the very intuition that it was not possible to build a universal

linear optical quantum computer, but as sometimes happens in science, a much more exciting

and beautiful result was shown.
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Figure 7.1: Heralded linear optical gates. (a) The original KLM NS gate takes

as input an ancilla photon, and based on a single photon and vacuum detection heralds

the NS operation. (b) The simplified Ralph et. al. biased NS gate, uses only a single

ancilla mode. (c) A heralded CZ gate can be made out of two NS gates. (d) A heralded

CNOT gate can be made from two NS gates, plus the respective balancing loss modes

and Hadamard operations ĤT on the target. Reflectivities of beamsplitters are shown

in inset, and phase shift is picked up off dashed side.

7.3.1 Nonlinear Sign Shift

A key component of their scheme is the nonlinear sign shift (NS) gate, which, in

the Fock basis takes

α |0〉+ β |1〉+ γ |2〉 NS−→ α |0〉+ β |1〉 − γ |2〉 . (7.1)

This cannot be achieved via linear optics alone. To see this, note the necessary

creation operator transformation for a π shift on the |2〉 term is â† |0〉 → iâ† |0〉
which transforms the entire state

(
α |vac〉+ βâ† + γâ†2/

√
2
)
|0〉 →

(
α |vac〉+ iβâ† − γâ†2/

√
2
)
|0〉 , (7.2)

hence the |1〉 term will always have an amplitude proportional to the square root

of the |2〉 term. However this operation can be achieved, probabilistically, due to

quantum interference [92] with ancillary photons.
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KLM demonstrate a NS gate across three modes as shown in Fig. 7.1(a). The

gate takes as input the state |ψ1, 12, 03〉 (in the photon number bases) and con-

ditional on detecting the ancillary state |12, 03〉 successfully implements NS |ψ〉1
with p = 1/4 (see Refs. [10, 279] for details of the calculation).

A simplification was made by Ralph et al. [279] who showed only a single

beam splitter was necessary to realise a NS gate at the cost of a biased sign

flip. To see this, consider a beam splitter with reflectivity η and input state

|ψ〉1 = α |0〉1 +β |1〉1 +γ |2〉1. If the ancillary state is |1〉2, then detecting the state

|1〉2 yields [Fig. 7.1(b)]

α |0〉+ β |1〉+ γ |2〉 → α
√
η |0〉+ β(1− 2η) |1〉 − γ√η(2− 3η) |2〉 . (7.3)

This operation is biased in the sense that not all terms scale equally, however this

can be balanced by adding heralded loss on the input or output mode. To see this

consider impinging the output state of (7.3) onto a beam splitter of reflectivity

η′, and heralding on a vacuum detection. In this instance the state becomes

α
√
η |0〉+ β

√
η′(1− 2η) |1〉 − γη′√η(2− 3η) |2〉, which has a balanced solution at

η = (3−
√

2)/7 ≈ 0.227 and η′ = 5−3
√

2 ≈ 0.757, at the cost of a slight reduction

in success probability from p = 0.25→ 0.23.

7.3.2 Heralded CNOT gate

Given an NS gate it is straight forward to constructed a heralded CZ gate by

placing NS gates on each arm of a balanced MZI, as shown in Fig. 7.1(c). Clearly

|0C0T 〉 → |0C0T 〉 (where C and T subscripts denote the logical control and target

qubits respectively), and — recall from Section 2.6.3 — when the MZI has zero

internal phase (i.e. only contains a single photon) it realises the identity on modes

{|1C〉 , |0T 〉}, thus |1C0T 〉 → |1C0T 〉 and |0C1T 〉 → |0C1T 〉.
If however both photons are input in the state |1C1T 〉 then they maximally

interfere on the first beam splitter giving the HOM state |20〉−|02〉 (in the photon

number basis and ignoring normalisation), which triggers the NS gates and picks

up an overall negative phase. The photons then re-interfere to produce the state
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− |1C1T 〉 with the desired sign shift. The gate requires two NS gates, thus the

overall success probability is p = 1/16

The CNOT can be constructed via a CZ gate with the addition of Hadamard

operations before and after the target qubits. To see this note the unitary operators

describing

ÛCNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




; ÛCZ =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




(7.4)

hence

(ÎC ⊗ ĤT )ÛCZ(ÎC ⊗ ĤT ) = ÛCNOT. (7.5)

Thus by placing beamsplitters before and after the target qubits a CNOT can be

realised, and it is this construction, shown in Fig. 7.1(d), we use as the basis for

the LPU implementation of the heralded-CNOT gate.

7.3.3 LPU Implementation

We use our LPU to implement, to the best of our knowledge, the first integrated

heralded-CNOT operation. For completeness the term ‘heralding’ refers to the

addition of ancillary photons (in addition to photons onto which qubit information

is encoded), which when measured in a particular pattern induce a nonlinearity on

the photonic qubits. When the ancillary photons are measured in a configuration

which is consistent with successful gate operation (such as one photon per ancillary

mode), the entire multi-photon state is collapsed onto the computational subspace

of the photonic qubits. If however such ancilla configuration is not measured, the

multi-photon state collapses onto a non computational subspace of the photonic

qubits (such as two photons in the control modes) and the state is discarded.

Crucially, this heralding process does not destroy the photonic qubits which means

they can be used as part of some trial-until-sucess based multiplexing scheme [134]

for processing later in the computation.
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Figure 7.2: Universal LPU labelling. Labelling convention for LPU including

variable beamsplitters (αi,j) and phase shifts (φi,j) shown in yellow.

The Ralph et al. heralded-CNOT (experimentally realised in bulk optics [142])

works with four photons over eight photonic modes: four computational modes,

two ancillary modes, and two balancing modes as shown in Fig. 7.1(d). We adapt

this scheme for use with the six-mode LPU by employing an auxiliary coupling

waveguide as the control-zero, and implementing the eighth lossy balancing mode

in post-processing as an equivalent reduction in detection efficiency on the control-

one mode, see Fig. 7.3(b).

Control and target qubits c0,1 and t0,1 are implemented via the modes {0, 2, 3, 4}
respectively, and heralding modes via {1, 5}. Crucially the photons {N,S,E,W}
must be input into modes {H,H,C, T} where {N,S} and {E,W} represent pairs

of photons from the same creation events. This means that the four photon term

|ψ4〉 ≈ |1111〉 + |2200〉 + |0022〉 does not give rise to events in the computational

subspace, in the ideal case, and can therefore be removed in postselection.

The unitary operation describing the heralded-CNOT ÛHCNOT can be deter-

mined entirely from the beamsplitter construction ÛBS described in Fig. 7.1(d),
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Figure 7.3: LPU heralded-CNOT. (a) The heralded-CNOT gate is successfully

implemented on the two photonic qubits, upon detection of the two ancilla photons. (b)

The linear optical protocol realising the heralded CNOT operation on the control c0,1

and target t0,1 qubits, with herald states |1〉. (c) Experimental data showing the com-

putational truth table, with the ideal theoretical truth table overlaid. Data is corrected

for measured detector efficiencies.

hence

ÛHCNOT =




0.476 −0.622 −0.440 0.440 0 0

−0.622 −0.476 0 0 0.622 0

−0.383 0 0.293 0.707 −0.383 −0.348

0.383 0 0.707 0.293 0.383 0.348

0 0.622 −0.440 0.440 0.476 0

0.306 0 0.166 −0.166 0.306 −0.870




.

However, directly compiling this to on-chip phases for LPU implementation is

less straightforward due to ÛDC 6= ÛBS. To do so we use the (constructive) circuit

finding algorithm described in Section 6.2 to determine the on-chip phases RHCNOT

necessary to realise ÛHCNOT, finding
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RHCNOT =




(0.000, 0.992) (4.712, 1.571) (4.544, 4.957) (5.375, 1.792) (3.816, 0.000)

(0.000, 1.571) (1.571, 0.992) (2.188, 0.000) (4.712, 0.000)

(0.000, 1.571) (5.498, 0.000) (1.571, 2.226)

(0.000, 3.142) (3.142, 0.000)

(0.000, 0.000)




where Rij = (φij, αij) as labelled in Fig. 7.2. The resulting circuit is displayed in

Fig. 7.3(c), where the green splitters represent the NS gates and the pink splitter

the balancing loss mode [cf. Fig. 7.1(d)].

7.3.4 Results

Via four separate measurements, each taking 5 hours and collecting ∼ 120 four-fold

coincidences, we measured the logical truth table for this operation in the com-

putational basis. The measured truth table for mapping between computational

basis states is given in Table 7.3, and displayed in Fig. 7.3(c). We found the mean

statistical fidelity Fs =
∑

i

√
pexpi .pthi [43] between experimental pexp and theoret-

ical pth probability distributions, when averaged over all computational inputs, to

be 0.930 ± 0.003. From Table. 7.3 we see that input states with c1 have higher

fidelity, this can be understood by noting that given this input state a photon can

never end up in c0, thus reducing the number of failure modes and raising fidelity.

We attribute the primary cause of deviations from unit fidelity as imperfections

in the photon source, such as reduced quantum interference between different pair

creation events [146], and higher-order terms in the spontaneous parametric down-

conversion process — see Section 3.2.3 for a detailed discussion.

7.4 Heralded Entangled States

7.4.1 Measurement Based Quantum Computation

Whilst KLM proves the ‘in principle’ possibility of an all linear optical quantum

computer (LOQC), its interest now is mainly pedagogic. First, for a scheme to be
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Output

Input c0, t0 c0, t1 c1, t0 c1, t1

c0, t0 0.837 (1) 0.131 (0) 0.019 (0) 0.013 (0)

c0, t1 0.166 (0) 0.779 (1) 0.025 (0) 0.030 (0)

c1, t0 0 (0) 0.001 (0) 0.069 (0) 0.931 (1)

c1, t1 0 (0) 0 (0) 0.919 (1) 0.081 (0)

Table 7.3: Heralded CNOT results. Measured logical truth table in the com-

putational basis for the heralded CNOT, along with theoretical probabilities in

brackets. Experimental data is corrected for measured detector efficiencies.

scalable in the presence of loss, photons must pass through a logarithmic number of

optical elements (as opposed to the linear number in KLM). Second, due to the re-

quirement of teleportation to boost non-determinstic gates, the resources required

for full KLM quantum computation are wholly impractical. New computation

models have therefore been developed to deal with both these challenges.

It was shown by Raussendorf and Briegel [280] that by making only single

qubit measurements on a particular class of highly entangled ‘resource’ state, uni-

versal quantum computation is possible. In this model of measurement-based

quantum computing (MBQC), single qubit measurements serve to encode, process

and readout information [281]; which due to the simplicity of these operations in

a photonic setting, suggests it may be well suited for LOQC. Nielsen was the first

to confirm this intuition and showed that by directly applying the principles of

KLM to a MBQC (namely non-deterministic gates and teleportation) once can

achieve an order of magnitude reduction in resources [282]. Shortly after Browne

and Rudolph [283] made a significant break through and proposed a scheme that

removes the need for teleportation and drastically reducing overheads by several

orders of magnitude. Moreover, their scheme significantly simplified experiments

by relying on quantum interference as opposed to classical interference; requiring

stability on the order of the coherence length of the photons 10−3 m as opposed

to their wavelength 10−6 m.
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Their scheme uses small entangled resource states, and probabilistically fuses

them together to create a larger cluster state. The probabilistic nature of this

operation can be overcome either via redundantly encoding multiple connections

[284], or using techniques such as percolation to create a logical qubit out of many

physical photons [285]. Error and loss thresholds for these schemes have also been

studied [178].

Regardless of the particular architecture, it is likely that any MB-LOQC will

require entangled states to be generated from single photons. A scheme for this was

first presented and demonstrated by Zhang et al. [286] which takes four photons

as input (over eight modes) and with probability p = 1/4 generates a maximally

entangled Bell state4. In the following we programme the LPU to realise a new,

more compact four-photon Bell state generator over six spatial modes, along with

tomographic capabilities to witness entanglement.

7.4.2 Bell State Generator

Our Bell state generator (BSG) is shown in Fig. 7.4(a,b) and accepts four photons

into the modes {1, 3, 4, 5} of our LPU. Detection in ancilla modes {3, 4} occurs with

probability p = 2/27 and heralds the Bell state |Φ+〉 = (|11021506〉+|01120516〉)/
√

2

over the remaining modes with unit probability in the ideal case. To see how the

circuit operates consider injecting the four photon state â†1â
†
3â
†
4â
†
5. After the first

set of 50/50 beamsplitters we have

1

4

(
â†1 + â†2

)(
â†3 + â†4

)(
â†3 − â†4

)(
â†5 + â†6

)
, (7.6)

which after the second set of η = 1/3 splitters transforms to

− 1

216

(
3
√

2â†1 +
√

6â†2 + 2i
√

3â†3

)(√
2â†2 − iâ†3 − â†4 −

√
2â†5

)

(√
2â†2 − iâ†3 + â†4 +

√
2â†5

)(
−2
√

3â†4 +
√

6â†5 − 3
√

2â†6

)
. (7.7)

4Zhang et al. [286] quote p = 3/16, but this probability can be boosted to p = 1/4 with

additional circuitry [287].
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We then impinge modes 3 and 4 on a final 50/50 splitter to give

− 1

216

(
3
√

2â†1 +
√

6
(
â†2 + i

(
â†3 + â†4

)))

(
(i− 1)â†2 + â†3 + iâ†4 + (1− i)â†5

)(
(1 + i)â†2 + â†3 − iâ†4 + (1 + i)â†5

)

(√
6â†3 −

√
6â†4 −

√
6â†5 + 3

√
2â†6

)
(7.8)

which, by multiplying through and heralding on terms â†3â
†
4 gives

â†1â
†
5

3
√

3
+
â†2â

†
6

3
√

3
|0〉 =

√
2

3
√

3

( |1115〉+ |1216〉√
2

)
(7.9)

or in the computational basis as labelled in Fig. 7.4, |Φ+〉 = (|0a0b〉 + |1a1b〉)/
√

2

with probability p = 2/27.

This circuit is described by the unitary matrix:

ÛBSG =




0.707 0.707 0 0 0 0

0.408 −0.408 −0.577 0.577 0 0

0.408 −0.408 0.289 + 0.289i −0.289 + 0.289i −0.408i −0.408i

0.408 −0.408 0.289− 0.289i −0.289− 0.289i 0.408i 0.408i

0 0 0.333− 0.471i 0.333− 0.471i 0.236− 0.333i 0.236− 0.333i

0 0 0 0 0.707 0.707




which corresponds to an on-chip phase configuration of

RBSG =




(0.000, 1.571) (0.000, 1.231) (0.000, 1.571) (0.000, 3.141) (0.000, 3.142)

(0.000, 3.142) (0.000, 1.571) (1.571, 1.231) (0.000, 3.142)

(0.000, 3.142) (0.000, 3.142) (0.000, 1.571)

(0.000, 3.142) (0.000, 3.142)

(0.000, 3.142)




.

7.4.3 Experiment

For Bell states, measurements in similar bases should be correlated while mea-

surements in different bases should be uncorrelated. To confirm the successful

generation of a Bell state we make both types of measurements and use the sub-

sequent results to witness entanglement
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Figure 7.4: LPU heralded Bell state generator. (a) The heralded Bell state

generator receives four photons and emits two of them in a maximally entangled state

upon detection of the remaining two. (b) Our linear optical protocol emits a Bell state on

modes {a, b} with input and heralding modes labelled by |1〉. The closed interferometer

has π/2 phase (not shown) and in the beamsplitter construction phase shifts result from

the underside of each splitter. (c) Experimental data measuring Bell state correlations in

a given basis (blue), with ideal theoretical values overlaid; error bars assume Poissonian

counting statistics.

We inject the photons {N,S,E,W} into modes {1, 3, 4, 5} of our LPU. In this

configuration the four-photon state arising from two independent SPDC events

does not give rise to events in the computational subspace. After implementing

the BSG, measurements on both qubits in the computational basis σz ⊗ σz are

straightforward [Fig. 7.5(a)] and arbitrary single qubit measurements on the b0,1

modes σz ⊗ σn̂ are possible with the unused MZI M̂1,5 [Fig. 7.5(b)].

To obtain statistics for the σx measurement on qubit 1, we create a fibre looped

Sagnac interferometer between the output of modes a0 and a1 [shown in Fig. 7.5(c)]

injecting the photon back through the chip with a stable phase. Due to the con-

figuration of the circuit, the photon sees a 1/3 reflectivity MZI between modes 2
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Figure 7.5: Heralded Bell state generator measurements. (a) Measurements

in the computational basis are taken directly from detectors. (b) Arbitrary single qubit

measurements on modes b0,1 can be made with a unused MZI (orange). (c) Non-

computational measurements on modes a0,1 are made via a fibre looped Sagnac in-

terferometer (PMF), injecting the qubit back through the LPU to implement a POVM

on modes 1 and 2, which is reconstructed via two separate measurements M1,M2. (d)

Both techniques can be combined to implement an entanglement witness.

and 3, before a 1/2 reflectivity MZI between modes 1 and 2. This circuit therefore

implements a single qubit positive-operator valued measure (POVM) with three

elements, {E+, E−, E1} where

E+ =
1

6
|1〉〈1|+ 1

2
|0〉〈0|+ 1

2
√

3
( |1〉〈0|+ |0〉〈1| )

E− =
1

6
|1〉〈1|+ 1

2
|0〉〈0| − 1

2
√

3
( |1〉〈0|+ |0〉〈1| )

E1 =
2

3
|1〉〈1|

corresponding to detection in modes {1, 2, 3} respectively. Since we cannot detect

in mode 3 (this is one of the inputs), we postselect on events where the photon is

detected in modes 1 and 2, which should occur with probabilities given by
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Output

Basis a0, b0 a0, b1 a1, b0 a1, b1

σz ⊗ σz 0.466 (0.5) 0.096 (0) 0.104 (0) 0.334 (0.5)

σx̃ ⊗ σx 0.414 (0.467) 0.105 (0.033) 0.097 (0.033) 0.384 (0.467)

σz ⊗ σx 0.250 (0.25) 0.264 (0.25) 0.211 (0.25) 0.275 (0.25)

σz ⊗ σy 0.249 (0.25) 0.261 (0.25) 0.261 (0.25) 0.230 (0.25)

Table 7.4: Heralded Bell state generator results. Experimentally measured

probabilities for the heralded Bell state to be found in a given basis, along with

the theoretical probabilities in brackets (see Fig. 7.4(b) for output labelling). Ex-

perimental data is corrected for measured detector efficiencies.

p+ =
Tr (E+ρ)

Tr (E+ρ) + Tr (E−ρ)

p− =
Tr (E−ρ)

Tr (E+ρ) + Tr (E−ρ)

which leads to an expectation value

p+ − p− = 〈σx̃〉 =

1√
3
〈σx〉

1
3

Tr (ρ |1〉〈1|) + Tr (ρ |0〉〈0|)

such that, with knowledge of the data from the σz measurement, we are able to

calculate the expectation of σx.

Since the experiment would require both input and detection in mode 1, we

implement it in two stages, first inputting in mode 1 and detecting four-fold coin-

cidences in modes {2, 3, 4, 5} and {2, 3, 4, 6} [M1 in Fig. 7.5(c,d)], then inputting

in mode 2 and detecting four-fold coincidences in modes {1, 3, 4, 5} and {1,3,4,6}
[M2 in Fig. 7.5(c,d)]. Note that by inputting in mode 2, the state would pick up

a relative π phase shift so this is offset by setting φ35 = 3π/2. The two data sets

are then normalised with respect to each other by the ratio of total counts in each

experiment.
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7.4.4 Results

Measurements with the Sagnac interferometer are taken for ∼ 60 hours, whilst

measurements without are taken ∼ 16 hours, collecting in total ∼ 200 four-folds

for each experiment. The experimentally determined probabilities to find the Bell

state in a given basis are displayed in Figure 7.4(c) and Table 7.4.

We found the statistical fidelity for the common basis measurements σz ⊗ σz
and σx̃ ⊗ σx to be Fs = 0.891 ± 0.015 and 0.979 ± 0.003 respectively, and the

uncommon bases σz⊗σx and σz⊗σy to be 0.999± 0.002 and 1.000± 0.002. These

measurements were used to verify the entanglement of our state by calculating

E = 1/2(〈σx ⊗ σx〉 + 〈σz ⊗ σz〉), finding a value of E = 0.673 ± 0.031 where

E > 1/2 witnesses entanglement [288]

7.5 Quantum Process Tomography

Whilst the measurements above give partial information about the process — such

as the such as the map between logical basis states or a bound on entanglement

— capturing complete information requires full process tomography; which due

to the versatility of our LPU, we are able to perform for the unheralded CNOT

gate presented in Section 2.6.7. With no ancillas, this unscalable gate requires

two photons which are consumed as part of its operation [shown in Fig. 7.6(a)].

Several examples of photonic chips specifically fabricated to implement such two-

qubit gates have been reported [14, 155, 289]. To compare the performance of our

universal processor against devices fabricated for a specific task, we implemented

a two-photon unheralded CNOT gate [96, 97, 118] [shown in Fig. 7.6(b)] with

single qubit preparation and measurement capabilities and performed full quantum

process tomography [181].

Two-qubit states were prepared and measured in the form |ψn〉 ⊗ |ψm〉 and

|ψn〉 〈ψn| ⊗ |ψm〉 〈ψm| respectively, where |ψ〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉 , |+i〉 , |−i〉}. An

estimate of the Choi-Jamiolkowski state ρestE corresponding to the process was

176



7.5. Quantum Process Tomography
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Figure 7.6: Quantum process tomography. (a) Quantum process tomography of an

unheralded two-qubit CNOT gate can be performed with the addition of arbitrary single

qubit preparation and measurement operations. (b) The linear optical circuit realising

the un-heralded CNOT gate, with MZIs (inset, orange) allowing single qubit operations.

(c) Experimentally determined process matrix with ideal theoretical values overlaid. (d)

An arbitrary single qubit rotation Rn̂(θ) about some vector (n̂) on the Bloch sphere can

be realised with an MZI and additional phase shifters. Three consecutive MZIs allows us

to perform full process tomography on any single qubit operation. (e) Experimental data

showing the measured process matrices for the three Pauli operations, the Hadamard

gate (Ĥ), and the π/8 phase gate (T̂ ). Experimental data is corrected for measured

detector efficiencies.

found using maximum-likelihood estimation (MLE) by minimisation of an ap-

proximation to the negative loglikelihood function:

ρEest = argmin
ρE

{∑

i,j

Nij(pij − dTr [ρEEij])
2

pij(1− pij)

}
(7.10)

(7.11)

where pij = nij/Nij are the experimental frequencies and Eij = (ρi)
T ⊗ Πj, i

labelling the preparation and j the measurement effect. To avoid problems as-

sociated with zero probabilities in MLE we use hedged MLE [290], where the
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7. Quantum Computation with Universal Linear Optics

experimental probabilities are adjusted to

pij =
nij + β

Nij +Kβ
(7.12)

where K is the number of outcomes in the measurement of pij and β = 0.1 is the

hedging parameter. The minimisation is performed by phrasing it as a Semidefinite

Program (SDP) and solved using the CSDP solver [291].

The average gate fidelity Fg defined as
∫
dψ 〈ψ|U †E(|ψ〉〈ψ|)U |ψ〉 was calcu-

lated from the process fidelity via the relation Fg = (dFp + 1)/(d + 1) and errors

were calculated by a bootstrapping method, where the raw experimental counts

were resampled 100 times with Poissonian noise and the statistics of the resulting

distributions analysed. The process matrix Re(ρEest) is shown in Fig. 7.6(c); the

process fidelity was found to be Fp = 0.909± 0.001, and the average gate fidelity

Fg = 0.927± 0.001, greater than those previously reported [14, 155, 185].

From Section 7.2, combined with two-qubit operations, a small set of single

qubit gates [Fig. 7.6(d)], including the Hadamard (Ĥ) and π/8 (T̂ ) gates are

sufficient to realise a universal gate set for quantum computing. We implemented

and performed full quantum process tomography for these two gates and for the

three Pauli gates [Fig. 7.6(e)], finding an average process fidelity of Fp = 0.992±
0.008.

7.6 Verifying Gate Operation

From an experimental perspective the requirement of heralding adds a significant

layer of complexity. As we have seen in Section 3.3, two photon states are pro-

duced with speed and with high fidelity, but four photon states are produced at

a much lower rate and with lower indistinguishability. Therefore robust and ac-

curate characterisation techniques are necessary to assess the gate fidelity before

embarking on long data runs.

To measure the performance of our device directly, independent of multi-photon

source errors, we adapt previous super-stable tomography techniques [187] to re-
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cover the raw transfer matrix M̂ describing the interferometer. Methods presented

in Chapter 4 reconstruct a unitary matrix, hence assume the device is lossless; a

highly unphysical assumption! In reality there are propagation losses, losses per

optical component, non-uniform facet loss, moreover these losses can be path de-

pendent meaning they don’t simply factor out. To that end we reconstructed the

transfer matrix M̂ for three of our quantum logic gates, making no assumption

about the unitarity of the device.

We first tested the stability of our device by setting the circuit to implement the

Fourier Transform, injecting single photons into modes 1 and 2, and monitoring

single photon output fluctuations. Over a period of 140 hours we observed an

average power variation of < 0.1%, implying the device is well described by a

single transfer matrix, particularly on the timescale of a typical single experiment,

which is several orders of magnitude shorter.

As in Chapter 4, the transfer matrix M̂ was recovered using measurements of

single photon ensembles to determine the absolute value of matrix entries, and

two-photon ensembles to determine phases [187]. However, the entire matrix is

normalised by a single scalar quantity (rather than each column) given by the sum

of counts in the largest column. Unitarity of the transfer matrix is not assumed in

its reconstruction: orthogonality between matrix columns is not enforced; columns

are not individually normalised.

As before, the circuit fidelity between M̂ and the intended unitary Û is defined

as FC = Tr(|U †.M |2)/6. For the Bell state generator, the heralded- and un-

heralded CNOT respectively we found FC = 0.943 ± 0.004, 0.941 ± 0.018 and

0.939± 0.040.

7.7 Concluding Remarks

We have applied our universal LPU to a variety of quantum information processing

protocols: from new entanglement generation schemes, to the first integrated im-

plementation of scalable quantum logic gates — our LPU switches betweens these
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and any other protocol in seconds. The breadth of tasks we implement highlights

a key functionality of universal quantum devices: namely, to serve as a testbed for

developing and discovering new quantum protocols. It is in this context — rather

than as a component in a universal LOQC — we expect it to find application;

replacing a multitude of existing and future prototype systems.

Combining LPUs with existing higher-efficiency sources and detectors will ex-

pand their capabilities, and the development of LPUs with high-speed modulation

[160] will enable the dynamically adaptive circuitry necessary for LO quantum

computing. Integration of these components [20, 292] with larger low-loss circuits

[293] will open up new avenues of research and application.
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8
Discussion

8.1 Key Results

Over the course of this thesis and my PhD in Bristol, I have demonstrated how

the generation, manipulation and detection of single photon states can be bought

together in a single machine — a linear optical processor — capable of performing

a multitude of quantum information processing tasks. Here, I summarise the key

results:

1. Efficient hardware level characterisation techniques.

Building on a previous proposal, we implemented a series of device level

characterisation techniques, and proposed practical extensions, making the

protocol both more robust and more accurate. We fully characterised a nine

mode waveguide device (which to our knowledge is the largest interferometer
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characterised with these techniques) and observed time evolution in a 21

mode quantum walk — results of which would have been unobtainable via

traditional tomographic techniques.

2. Verification of boson sampling against tractable distributions.

Using a linear optical processor based on passive waveguide technology, we

implemented two key protocols for the verification of a formally unverifiable

algorithm. First, we implemented a protocol which rules out the sampling

of bosons from a trivial distribution; second, we proposed and implemented

an experimentally motivated protocol, relying on bosonic bunching, which

rules out sampling from a distribution of distinguishable particles.

3. Verification via predictable quantum correlations.

We proposed a new approach to verification whereby a circuit configuration is

set which engenders large-scale, ordered, photonic quantum interference; yet

produces an efficiently predictable probability distribution. Confirmation of

this predictable structure is then used as evidence for correct operation when

the device is set to an unverifiable mode of operation. We used this technique,

and the phenomena of bosonic clouding, to verify quantum interference of

up to five photons in 21 modes — a Hilbert space of > 50, 000 dimensions.

4. A universal linear optical processor.

We presented the first fully reconfigurable universal linear optical processor.

Whilst it has been known for 30 years that such a device was possible it

was only until now that the necessary technology existed for the high fidelity

fabrication and operation of many reconfigurable waveguide elements. Our

six-mode universal system consists of a cascade of 15 Mach-Zehnder inter-

ferometers with 30 thermo-optic phase shifters. Alongside this device we

present methods for characterisation, calibration and benchmarking.

5. Verification with universal linear optics. We programmed the universal

linear optical processor to implement 100 boson sampling protocols, and si-
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multaneously realise newly proposed verification procedures (based upon our

previous results). We implemented 100 single photon Haar random unitaries

with average fidelity 0.999 ± 0.001, and explore newly discovered complex

Hadamard matrices. Finally, we verified that six photon events are drawn

from a quantum distribution with confidence p = 0.998.

6. Quantum information processing with universal linear optics. We

programmed the universal linear optical processor to implement (to the best

of our knowledge) the first integrated heralded CNOT gate; reproducing the

computational basis truth table. We implemented the first on-chip heralded

entanglement generation scheme and performed a series of measurements

to witness entanglement. We performed full quantum process tomography

of a unheralded-CNOT, and achieved fidelities surpassing those previously

reported in linear optical quantum computing.

8.2 Outlook

The general approach of Chapters 4 and 5 is to leverage the experimentalists in-

formation about a system to significantly reduce the size of a characterisation or

verification problem. In the context of characterisation, for any quantum technol-

ogy to have a hope of scaling efficient hardware characterisation techniques are

essential. This information can be used for in situ error correction, shaping future

device designs, and informing platform specific error correction codes [177, 178].

Whilst hardware level analysis has been provided for platforms such as supercon-

ducting qubits [76], it is lacking from from linear optics, and until this analysis is

provided there will always be a question mark over scalability. The iterative SST

protocol will likely find application in the rapid characterisation of many devices

from large fabrication runs where time is a constraint. Similar large scale fabrica-

tion runs of integrated photon sources [20] and detectors [294] are on the horizon,

and we expect similar rapid device level characterisation techniques to emerge (see

for example Jizan et al. [193]).
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The first machines to solve problems intractable to classical computers, are

likely to tackle bespoke problems suited to their own particular physical capabili-

ties. Boson sampling is one example of this in the context of photonics, but other

analogue quantum simulators exist, for example: large scale quantum annealing

machines [252, 253], ion traps with hundreds of spins [254] and ultra-cold quantum

gasses [295]. Our results demonstrate both the enormity of the task of verification

as systems scale up in size, and the efficacy of utilising physical knowledge about

a system. We therefore expect machine level approaches to verification to find

application for systems which exhibit their own physical properties (for example

anti-bunching in a fermionic gas [250]).

In Chapters 6 and 7 we present a universal linear optical processor. The im-

mediate resource savings such a universal system offers is significant. Experiments

that previously took months or years to build and collect data, now take millisec-

onds to build and hours to collect data. Compare for example the months taken for

the first bulk KLM-CNOT gate, to the hours it took for our implementation. The

capabilities of linear optical processors will be expanded further with high-speed

modulation [160], integrated sources [20] and detectors [21] and larger low-loss

circuitry [293, 296].

The breadth of tasks we implement, and the speed with which we do so, high-

lights a key functionality of universal quantum devices: namely, to serve as a

testbed for developing new quantum protocols. It is this functionality, rather than

as a component in a universal linear optical quantum computer, where we expect it

to find application; replacing a multitude of existing and future prototype systems.

In particular, this author predicts universal linear optical processors will find ap-

plication in exploring pre-universal models of quantum computation which make

use of the nature of photons themselves. Recent work has provided tantalising ev-

idence for this in the context of quantum chemistry [297], and further application

may be found in more nascent fields such as quantum machine learning [64–66]. It

is this authors opinion that pre-universal models of quantum computation are the

next frontier for quantum photonic science, and his hope that some of the results

presented in this thesis may contribute towards that journey.
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M. Lobino, M. Gräfe, M. Heinrich, S. Nolte, A. Szameit, and J. L. O’Brien,

Phys. Rev. Lett. 112, 143604 (2014).

[249] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni,

F. De Nicola, F. Sciarrino, and P. Mataloni, Nat. Photon. 7, 322 (2013).

[250] T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, and

I. Bloch, Nature 444, 733 (2006).

[251] M. C. Tichy, K. Mayer, A. Buchleitner, and K. Mølmer, Phys. Rev. Lett.

113, 020502 (2014).

[252] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dick-

son, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. En-

derud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Per-

minov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin,

J. Wang, B. Wilson, and G. Rose, Nature 473, 194 (2011).

203



BIBLIOGRAPHY

[253] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M.

Martinis, D. A. Lidar, and M. Troyer, Science 345, 420 (2014).

[254] J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks,

H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature 484, 489 (2012).

[255] J. Carolan, C. Harrold, C. Sparrow, E. Mart́ın López, N. J. Russell, J. W.
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