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1. INTRODUCTION

Photonic integrated circuits (PICs) have become increasingly
important in classical communications applications over the past
decades, including as transmitters and receivers in long-haul,
metro, and data center interconnects. Many of the attributes that
make PICs attractive for these applications—compactness, high
bandwidth, and the ability to control large numbers of optical
modes with high phase stability—also make them appealing
for entirely new applications, such as hardware accelerators
based on emerging classical and quantum computing concepts.
However, these emerging applications come with highly demand-
ing device and scaling requirements. For example, proposed op-
tical matrix processors will likely require the control of at least
hundreds of spatial modes to be useful as neural network hard-
ware accelerators [1–3], optical quantum computing protocols
may require similar numbers of optical modes for each logical
quantum bit (qubit) [4–6], and quantum computing schemes
based on atomic memories will also require high-performance
control over large numbers of optical spatial modes [7–9]. In ad-
dition, many of these emerging applications will require new types
of devices, such as extremely low-loss modulators, and may need
to function at wavelengths outside the standard telecommunica-
tions band. Whereas these challenges may have appeared daunt-
ing a decade or two ago, rapid advances in PICs have recently
enabled proof-of-concept demonstrations. Silicon-on-insulator
(SOI), silicon nitride, and indium phosphide (InP) technology
has, in many areas, led the way thanks in large part to the avail-
ability of mature fabrication processes and multi-project-wafer
(MPW) services [10–12]. Recently, SOI PIC systems that can
coherently control tens of optical modes have been demonstrated
[1]. Crucially, it was shown that even though all individual

photonic components are imperfect, nearly perfect mode trans-
formations become possible in sufficiently large reconfigurable
optical devices [13,14]—indicating that scaling optical systems
while mitigating errors is feasible. Among reconfigurable optical
systems, there has been much progress towards “universal linear
optics” devices: photonic circuits that can be programmed to per-
form all possible linear optical transformations on a given set
of input modes [15,16]. This paper will review progress towards
such general-purpose “programmable nanophotonic processors”
(PNPs) and emerging applications to problems including
machine learning and quantum information processing. The
PNPs considered here implement linear optical transformations
by one-way propagation; we assume no resonators or other feed-
back loops, which are important for a number of applications,
including RF filtering [17–20].

2. PROGRAMMABLE NANOPHOTONIC
PROCESSORS

The most popular methods for constructing a programmable
mode transformer from N input to N output modes break the
problem up into a mesh of 2 × 2 mode transformers consisting of
Mach–Zehnder interferometers (MZIs) [13,15,21], as shown in
Figs. 1(a) and 1(b). Each MZI consists of two 50% beam
splitters and two phase shifters parameterized by �θ,ϕ�, as shown
to the right of Fig. 1(b). In integrated photonics platforms,
beam splitters are commonly realized by directional couplers
that convert input modes a1, a2 into output modes b1,2 �
1ffiffi
2

p �a1,2 � ia2,1�; note the π∕2 phase in the cross terms guarantees
unitarity of the directional coupler transformation. The MZI
shown in the inset of Fig. 1(b) applies the SU�2� transformation,
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U �2� �
�
eiϕ sin�θ∕2� eiϕ cos�θ∕2�
cos�θ∕2� − sin�θ∕2�

�
,

up to a global phase. Here we assume the unit cell is lossless; ac-
counting for losses requires each MZI to be described by a 4 × 4
matrix, rather than the 2 × 2 matrix considered here. Losses can
be modeled by “virtual” beam splitters coupling the original mode
and a “vacuum” mode. If such virtual beam splitters are included,
the overall transformation can still be represented as a unitary
U �M�, where M > N accounts for the additional loss channels.
The N × N transformation that applies to our input and output
waveguide modes then comprise a nonunitary submatrix of
U �M�. In instances where the loss in each component is iden-
tical, it is possible to represent the PNP transformation by the
unitary U �N � and to account for loss as a global parameter α ≤
1 that can be factored out as V �N � � αU �N �. Experimentally,
waveguide losses have been shown to be relatively uniform, so that
losses can likely be assumed to be uniformly distributed [10]. In
this case, the scattering statistics for q identical, single photons
passing through the PNP are described by U �N �, and the prob-
abilities of all photons arriving at the output will scale as αq.

For a universal unitary transformation, each of the N input
modes must be coupled to each of the N output modes.
Figure 1(a) shows an arrangement of MZIs connecting N � 6
modes. To allow connections between all modes, one requires
Σn � N �N − 1�∕2 (N choose 2) MZIs—15 MZIs for this exam-
ple. The triangular arrangement of Fig. 1(a) was first proposed by
Reck et al. [22]. Figure 1(b) shows a more compact arrangement,
described by Clements et al. [21], that accomplishes the same
U �N � transformation; it also requires 15 MZIs for N � 6
modes. Both the “Reck” and “Clements” decomposition algo-
rithms terminate with a matrix that implements U �N � up to a
diagonal phase screen. The phase screen can be implemented
using phase shifters at each input mode, as shown in Figs. 1(a)

and 1(b). A cascaded binary tree structure [23] that can imple-
ment arbitrary unitary transformations has also been proposed.

The network shown in Fig. 1(c) was originally proposed by
Miller as a method for realizing any linear transformation on a
set of spatial modes [16]. This network uses a physical instantia-
tion of the singular value decomposition, which is a factorization
of any matrix (M ) as M � UΣV †, where U is an m × m unitary
matrix; Σ is an m × n diagonal, rectangular matrix of nonnegative
real numbers; and V is an n × n unitary matrix. Here, two uni-
versal unitary circuits (U ,V †) are connected by a column of sin-
gle MZIs that are used as variable attenuators implementing Σ.
In the original implementation of the “Miller” network, each
MZI is implemented using two internal phase shifters with the
differential phase between the two phase shifters being one
parameter and the global phase imparted by the two phase shifters
as another parameter [13,16,23–25]. The “Miller” MZI configu-
ration can be more compact than the standard configuration,
since the overall unit cell length is reduced by the length of one
phase shifter.

PNPs have been demonstrated in a number of material plat-
forms, some of which are summarized in Fig. 2. The SOI platform
offers an especially high index contrast of 3.4:1.5, which enables
low-loss waveguide bends with radii as small as 2 μm [28]. The
resulting high component densities are especially important for
large PNPs, which already can have up to 88 MZIs connecting
26 optical [1] modes, as shown in Fig. 2(a), and applications are
demanding much larger devices. Figure 2(b) shows a silicon pho-
tonics-based U �4� PNP that was used for separating a multimode
channel into individual single-mode waveguides. The U �6� PNP
was realized in germanium-doped glass with thermal modulators,
illustrated in Fig. 2(c), and enabled the demonstration of
linear optical quantum gates and boson sampling schemes [15].
Figure 2(d) shows a silicon photonics-based U �4� PNP used to
demonstrate a universal coupler [26].

(a)

(c)

(b)

Fig. 1. (a), (b) Universal unitary networks composed of MZIs; (a) shows the “Reck” encoding and (b) shows the “Clements” encoding. Inset shows the
unit cell of a PNP, a programmable MZI. (c) Universal linear network composed of two universal unitary circuits and an additional column of “loss”MZIs
originally described by Miller [16].
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Phase shifter technology in MZIs is of central importance,
and a number of phase shifter technologies are being advanced.
Lossless phase shifting mechanisms in silicon include the thermo-
optic effect (3 dB bandwidth up to a few hundred kilohertz) [29],
mechanical effects (∼MHz bandwidth) [30,31], and electric-
field-induced electro-optic effects (∼GHz bandwidth) [32].
Recent work [33] has investigated the integration of III-V mate-
rials with silicon photonics for compact, low-power phase shifting
based on metal-oxide semiconductor capacitors. The possibility of
monolithically integrated silicon transistor control circuits [34]
and photonic components bolsters the case for large-scale PNPs
in silicon. Phase modulation mechanisms that introduce dynamic
loss, such as the plasma dispersion effect, are not ideal for realizing
PNPs since they complicate the description of the MZI unit cell
and give rise to nonunitary transformations. A number of avenues
exist to further increase component density. One example is to
shrink the directional couplers. Inverse design methods are par-
ticularly promising for producing wavelength-scale devices [35,36].

3. PNP PROGRAMMING

Configuring or programming N × N mode transformations in a
PNP involves precise tuning of approximately N 2 phases. This
can be a nontrivial problem, especially when considering MZI
inhomogeneity and the potential for cross talk between modula-
tors (especially relevant for thermal modulators). MZI phases are
set by applying voltages or currents to each phase shifter, labeled
here as �i, j� within the array. Figure 3(c) outlines the basic pro-
gramming flow. Before considering possible routes towards pro-
gramming an entire PNP, it is instructive to consider the behavior
of a single, programmable MZI. Some single-MZI programming
examples are shown in Table 1; here, we assume the differential

phase between the two input modes to an MZI can be controlled
and is described by some phase γ. Without an external phase
shifter (ϕ), transformations are confined to the plane shown in
Fig. 3(b). To access the full Poincaré sphere, an external phase
shifter is required.

A number of programming protocols have been developed,
and they can broadly be grouped into one of three categories:
(1) element-by-element, with phase shifter settings for each
MZI considered individually; (2) compiled, with phase shifter set-
tings for each MZI resulting from a matrix decomposition algo-
rithm [16,21,22]; or (3) optimized, with phase shifter settings for
each MZI resulting from the execution of an optimization pro-
tocol acting on the phase shifters [1,16].

PNPs acting as a switching matrix are generally programmed
using a category (1) protocol. PNPs implementing matrices or
quantum gates [2,15] (which can be specified as unitary matrices)
are generally programmed using a category (2) protocol. A matrix
is provided as input to a decomposition algorithm, which then
returns the phase shifter settings required to realize the matrix
transformation. PNPs used as black boxes that unscramble light
[26] or scatter light to implement a specific output intensity pat-
tern [1] are programmed using a category (3) protocol where the
phase shifter settings are prescribed by an optimization algorithm.

To evaluate the accuracy of a program in a PNP, it is useful
to characterize the unitary transformation it implements.
Fortunately, efficient techniques exist [37] that use laser light
to determine the amplitude elements (jU i,jj2) and interferometry
to determine the phase arguments (arg�Ui,j�) up to an unobserv-
able input and output phase screen. Circuit fidelity is a metric that
quantifies the “closeness” between two unitary matrices and is
given by FC � Tr�jU †UT j2�, where Tr� � is the trace operator,
U is the measured unitary, and UT is a target unitary.

Fig. 2. (a) Optical micrograph of 26-mode, 88-MZI PNP [1]. PCBs are visible above and below the chip. (b) Artistic rendering of a U �4� PNP by
Annoni et al. [26]. (c) Germanium-doped glass six-mode, 15-MZI PNP by Carolan et al. [15]. (d) Four-mode, six-MZI PNP by Ribeiro et al. [27]
implemented in the SOI platform.

Review Article Vol. 5, No. 12 / December 2018 / Optica 1625



After fabrication, the initial state of the PNP is unknown due
to static phase disorder within the waveguides. This effect has
been studied in the context of silicon photonics and is parame-
terized by the static “phase coherence length” [38]; in silicon, this
parameter is typically on the order of a few millimeters. To correct

for this initial phase disorder, a PNP can be calibrated. There
are several known algorithms for calibration, including self-
configuring protocols [23] and progressive algorithms [39]. The
ability to monitor the power at each MZI in a PNP enables dy-
namic, local measurements of the state of the system (at the cost
of electronic control complexity); contactless integrated photonic
probe (CLIPP) detectors avoid excess insertion loss by detecting
light via bandgap defect states [26].

4. APPLICATIONS

We now discuss a subset of recent PNP applications: self-
configuration and mode mixing, quantum transport and quan-
tum gates, and machine learning.

A. Self-Configuration

As mentioned above, accurate configuration of the many degrees
of freedom (phase settings) in the PNP can pose a challenge,
especially when accounting for inhomogeneity in constituent de-
vices. In 2013, Miller proposed a self-configuring solution for one
particular PNP function: the coherent addition of light from N
spatial input modes into one spatial output mode by canceling the
fields in the remaining N − 1 output modes [16]. This concept is
illustrated in Figs. 4(a) and 4(b), where the phase shifters of MZIs
A–D are consecutively tuned to cancel the photocurrents on the
corresponding output detectors. An important advantage in this
approach is that each MZI can function without global knowl-
edge of the other MZIs or photodetectors, and this independent
self-configuration promises that such coherent, nearly lossless
mode adders could be very fast. The coherent field adder only
works if the optical modes are locally phase stable; for example,
it would be impossible to add single-photon excitations (which
have no fixed relative phase) over the input modes. Instead,
arbitrary linear optical mode converters require an N × N mesh.
Using an extension of his previous work, Miller proposed such a
self-configuring N × N mesh that uses detectors on each MZI [26].
Using SOI PIC platforms, a 4 × 4 universal PNP with power mon-
itoring taps was demonstrated in 2016 [27] [see Fig. 2(d)]. A 4 × 4
dynamically self-configuring mode adder was demonstrated in 2017
[26]. As shown in Fig. 4(c), the authors used a 980 nm laser to
generate a dynamic input state to the 4 × 4 mesh and used CLIPP
detectors to actively track and undo mode mixing. As they scale in
numbers of modes, self-configuring circuits could enable a range of
applications [40], from spatial multiplexing/demultiplexing—for
example in multimode fiber communications—to beam tracking
and quantum circuits. The “Clements” architecture cannot be self-
configured in this way, though a scheme has been proposed to allow
progressive configuration of such networks [24].

B. Quantum Information Processing

Photons are appealing as a carrier of quantum information due
to their ability to propagate with low loss over long distances,
phase stability, and their amenability to control even at room
temperature in PICs [41]. Perhaps the greatest challenge lies
in producing controlled interactions between photonic quantum
states: deterministic two-photon gates require many ancillae
photons together with measurement and fast active feedforward
[9,42,43], or atom-mediated interactions [44,45] translated to
PIC-compatible platforms [46–49]. As both approaches require
phase-stable control of large numbers of optical modes with
high precision, programmable PNPs are emerging as important

(a)

(b)

(c)

Fig. 3. (a) Phase shifter addressing scheme. (b) Poincaré sphere show-
ing the space of transformations enabled between the top “t” and bottom
“b” waveguide modes. Without an external phase shifter, transformations
are confined to the blue plane; with an external phase shifter, transfor-
mations span the sphere. (c) Programming model for programmable
nanophotonic processors. After each round of programming, the results
of the measurement step can be used to correct the program.

Table 1. Example Matrices That Can Be Generated by a
Single MZI with an Internal Phase Shifter, an External Phase
Shifter ϕ, and Control over the Input Phase Difference γa

Gate Matrix (γ, θ, ϕ)

Hadamard 1ffiffi
2

p
�
1 1
1 −1

�
(0, π∕2, 0)

Pauli-X (σ̂x)
�
0 1
1 0

�
(0, 0, 0)

Pauli-Y (σ̂y)
�
0 −i
i 0

�
(π∕2, 0, π∕2)

Pauli-Z (σ̂z )
�
1 0
0 −1

�
(0, π, 0)

aBy setting θ � π∕2 and all other phases to zero, the Hadamard matrix (or
50:50 splitter) is realized.
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platforms. In contrast to custom-built static PICs, PNPs also
provide a platform for rapid prototyping of photonic quantum
information processing protocols, including quantum comput-
ing protocols [15], quantum transport [1], and quantum simu-
lation [6,50]. In the following, we briefly discuss some of these
demonstrations.

1. Quantum Transport

A number of interesting problems, from coherent effects in bio-
logical processes [51] to quantum computing [52,53] and quan-
tum search [54], involve the transport of quantum particles along

chains of coupled quantum systems. One experimental approach
relies on a photonic quantum walk along discrete lattice sites,
which can be represented as the waveguides of the PNP. While
nonlinear interactions between photons give rise to particularly
rich phenomena and applications, even linear quantum walks
of single or multiple photons have a number of applications
[1,50,55,56] and have been proposed to be computationally hard
on classical computers for large-enough problems [57].

Figure 5(a) shows the topology of a 26-mode, fan-out PNP
implemented in the silicon photonic platform; this PNP consists
of 88 programmable MZIs and 176 phase shifters and supports

(c) (c.i) (c.ii) (c.iii)

(b)
(a)

Fig. 4. (a) Schematic of system for coherent summing of light from N input spatial modes. (b) Schematic drawing of a U �4�, Reck-topology PNP with
a four-input, four-output multimode interferometer tied to the input waveguides. Active MZIs in this experiment are highlighted blue. (c) To implement
dynamic mode mixing, 980 nm light is focused on the multimode interferometer. Eye diagram for signal passing through the mixer (c.i) without the
perturbing laser, (c.ii) with the perturbing laser and automatic calibration disabled, and (c.iii) with the perturbing laser and automatic calibration enabled.

(a)

(b)

(c)

(d)

Fig. 5. (a) Schematic representation of the 26-mode PNP along with the coordinate system definition for quantum transport experiments.
(b) Conceptual drawing of the phase landscape for a strong, statically disordered system where light is localized initially to waveguide i14. By introducing
dynamic phase disorder (shown as red vibrations), it is possible to optimize transport of light to distant waveguide sites.
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embeddings of universal unitary circuits up to U �9�. An input
state of photons enters from the left and undergoes a quantum
walk on a 1D chain as it passes in time along the right. By
programming the splitting ratios of the sites (via the internal phase
shift), it is possible to explore discrete-site quantum transport
on a number of graphs. In a recent experiment, Harris et al. [1]
explored a single photonic quantum walker under static and dy-
namic phase disorder. Each of the MZIs were set to implement
50:50 splitting ratios, but the external phase shifters were pro-
grammed to have either a static phase variation [illustrated in
Fig. 5(c)], a dynamically changing phase [illustrated in Fig. 5(d)],
or any combination of static and dynamic phase variations. In this
configuration, the PNP implements a balanced coin quantum
walk on a discrete-time, 1D graph. A sufficiently large static-only
phase variation can confine photons to a local vicinity (as in
Anderson localization), whereas a strong dynamic phase variation
causes a ballistic diffusion in time (due to dephasing between the
sites). An optimal trade-off between static and dynamic disorder
(which rises with effective system temperature) had been pre-
dicted to facilitate environment-assisted exciton transport in pho-
tosynthetic complexes [51]. In this regime, dynamic disorder
prevents a particle from becoming “stuck” in one site. The pro-
grammability of the PNP made it possible to carefully study this
quantum transport across 64,400 unique settings of static and
dynamic disorder, and demonstrate this environment-assisted
quantum transport experimentally.

2. Quantum Gates

Universal quantum computers follow two predominant frame-
works: the circuit model [58], where single qubit and multiqubit
gates are performed sequentially on qubits, and the cluster state
model [59,60], where a large entangled resource state is first cre-
ated, and then single qubit gates are performed, which encode the
computation. In linear optics photonic quantum computing,
two-qubit processes are realized probabilistically. It is therefore
critical that the successful operation of a gate be “heralded” by
ancillary photons. Carolan et al. [15] used a six-mode PNP
alongside an off-chip multiphoton source to implement a variety

of heralded gates in both the circuit and cluster state model.
Figures 6(a) and 6(b) show the symbol and photonic circuit
for a heralded controlled-NOT (CNOT) operation, which uses
two path-encoded computational photons and two ancillary pho-
tons. Given a detection in the ancillary modes, the CNOT logic
is guaranteed to have taken place on the computational photons
[see Fig. 6(c)]. Technologically, the low coupling loss of 0.4 dB
between silica waveguides and input/output fibers was key to en-
abling multiphoton experiments of up to six photons. While SOI
PNPs have so far been limited to coupling losses of 3 dB, losses as
low as 0.4 dB have been demonstrated in silicon photonics [61],
pointing the way towards large-scale SOI PNPs suitable for multi-
photon quantum information.

C. Machine Learning

Artificial neural network (ANN) algorithms have dramatically im-
proved natural language processing, image recognition, object
detection, and more [62]. ANNs rely heavily on matrix-vector
products and require frequent memory access during training and
inference. Recent work has focused on developing tailored elec-
tronics architecture for ANNs that take advantage of the limited
requirements on computational precision, large matrix sparsity,
and other features to achieve improved computational rates and
energy efficiency [63–68]. However, the computational speed and
power efficiency achieved with these hardware architectures are
still bound by underlying transistor device physics, including
switching energies and electronic clock rates—two quantities
that are closely linked.

Some machine learning algorithms, including neural net-
works, appear suited for analog computing architectures, includ-
ing analog complementary metal-oxide semiconductor (CMOS)
circuits [69], memristor arrays [70,71], photonic networks [2],
and magnetic devices [72]. Photonic methods may simultane-
ously enable low latency, high energy efficiency, and high
throughput [2]. While bulk-optical implementations of optical
neural networks (ONNs) have been suggested in the past [73],
it has only recently become possible to implement large-scale,
phase-stable, and programmable linear transformations. Recent
work has focused on implementing hybrid optical-electronic
systems that implement spike processing [74] and reservoir com-
puting [75–77]. Augmented with optical nonlinearities, PNPs
promise high-speed and low-power implementations of neural
networks fully in the optical domain.

As shown by Shen and Harris et al. [2], it is possible to directly
map the mathematical description of a multilayer perceptron,
the most basic form of deep neural network, onto arrays of
PNPs connected by nonlinear optical components. In each layer
of a multilayer perceptron, a matrix-vector product is evaluated,
and then each entry of the resultant output vector is passed
through a nonlinear “activation function.” A schematic repre-
sentation of an ONN is shown in Fig. 7(a), and a zoom into
a single layer is shown in Fig. 7(b). Matrix-vector products are
evaluated using optical interference units in the “Miller” encoding
[(PNPs implementing arbitrary, nonunitary matrices as shown
in Fig. 1(c)] [16], and activation functions are realized with an
optical nonlinearity unit (ONU). Vectors are encoded in the
intensity and phase distribution of optical signals incident at
the left of the ONN. These optical signals propagate through
the set of layers comprising the ONN and are finally converted
into electrical current using detectors, shown at the right of

Fig. 6. Linear optical quantum logic gates in a PNP [15]. (a) Heralded
controlled-NOT gate schematic. (b) Program within the U �6� PNP.
(c) Computational truth table, with theoretical result overlaid.
Correspondence between MZI reflectivities and colored beam splitters
in (b) shown at right.
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Fig. 7(a). An ONU could be implemented using saturable absorb-
ers [78,79] or devices that exhibit bistability [80–82]; both kinds
of nonlinear optical devices have been demonstrated in integrated
photonic systems, but challenges remain in realizing an array of
such nonlinear devices in a single system.

Existing neural network training algorithms, such as backpro-
pagation [83,84], executed on electronic computers can be used
to determine the set of matrices to be programmed into the
ONN. After training, a set of weights in each layer that minimizes
an error metric is determined. These weight matrices can be de-
composed into PNP phase shifter settings at each layer. After pro-
gramming, the ONN can be used as an inference machine—
classifying vectors that are not part of the training data set.

This adaptation of deep neural networks to integrated photon-
ics was tested on a simple vowel recognition problem [2]. A two-
layer neural network with four neurons per layer and a saturable
absorber nonlinear activation function was trained on a 64-bit
computer against a set of four-dimensional input vectors that re-
present recordings of people speaking one of four vowels. The
data set contained 360 vectors; 180 were used for training and
180 were exclusively used for testing. After training, the ONN
was able to correctly classify 138/180 spoken vowels (compared
to 165/180 for a 64-bit digital computer). Advances in PNP pro-
gramming fidelity and improved readout (including optical fiber
packaging techniques) may reduce the performance gap between
the ONN and the digitally simulated one.

5. DISCUSSION

PNPs are already finding applications in proof-of-concept dem-
onstrations including classical computing systems [1–3], quan-
tum computing systems [15], self-calibrating mode mixers
[26], and matrix processors [2,15,27]. For real-world applica-
tions, it is still necessary to address some important challenges,
including (1) the development of more compact, low-power
phase shifters with ultralow loss and—for many applications—
programmability at rates of MHz and higher; (2) operation out-
side the near-infrared spectrum, especially at shorter wavelengths;
(3) precise electronic control over tens of thousands of phase shift-
ers; and (4) more compact ultralow loss passive components,
which may be developed by computational design [35,85].

While there are many challenges towards scaling PNPs, signifi-
cant progress is being made on multiple fronts. Optoelectronic

systems with over 1000 active elements and the circuits that con-
trol them have been monolithically integrated in CMOS proc-
esses [86]; MEMS and NEMS switches show promise for low-
power switch arrays [27,31]; and a growing range of materials
are becoming available, including SOI, silicon nitride, and
InP. These developments point to a new era in photonics design
and applications in which high-volume manufacturing will make
general purpose PNPs containing an abundance of components
cost-effective over custom-designed PICs in many applications.
As field programmable gate arrays (FPGAs) have enabled a
new paradigm for electronics, PNPs, or “optical FPGAs,” will en-
able unforeseen applications and advances for optical processing.
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