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Conventional computing architectures have no known efficient algorithms for combinatorial optimization tasks such
as the Ising problem, which requires finding the ground state spin configuration of an arbitrary Ising graph. Physical
Ising machines have recently been developed as an alternative to conventional exact and heuristic solvers; however,
these machines typically suffer from decreased ground state convergence probability or universality for high edge-
density graphs or arbitrary graph weights, respectively. We experimentally demonstrate a proof-of-principle integrated
nanophotonic recurrent Ising sampler (INPRIS), using a hybrid scheme combining electronics and silicon-on-insulator
photonics, that is capable of converging to the ground state of various four-spin graphs with high probability. The
INPRIS results indicate that noise may be used as a resource to speed up the ground state search and to explore larger
regions of the phase space, thus allowing one to probe noise-dependent physical observables. Since the recurrent pho-
tonic transformation that our machine imparts is a fixed function of the graph problem and therefore compatible with
optoelectronic architectures that support GHz clock rates (such as passive or non-volatile photonic circuits that do not
require reprogramming at each iteration), this work suggests the potential for future systems that could achieve orders-
of-magnitude speedups in exploring the solution space of combinatorially hard problems. © 2020 Optical Society of

America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.386613

1. INTRODUCTION

Combinatorial optimization is critical for a broad array of
tasks, including artificial intelligence, bioinformatics, cryp-
tography, scheduling, trajectory planning, and circuit design
[1–3]. However, combinatorial problems typically fall into the
nondeterministic-polynomial hard (NP-hard) problem class,
becoming computationally intractable at large scale for traditional
algorithms. This challenge motivates the search for alternatives to
conventional (von Neumann) computing architectures that can
efficiently solve such problems. The Ising problem, which con-
sists of finding the ground state spin configuration of a quadratic
Hamiltonian defined by a symmetric matrix K and spins of unit
amplitudeσ1≤i≤N ∈ {−1, 1},

H(K )(Eσ)=−
1

2

∑
1≤i, j≤N

σi K ijσ j , (1)

has garnered significant attention, as many other combinatorial
problems can be polynomially reduced to an Ising problem [4,5].
Therefore, any technique for finding the ground state of arbi-
trary Ising problems, which is an NP-hard computational task,
may extend to a wide range of other computationally intensive
optimization problems.

There is currently no known efficient classical algorithm to
find the exact ground state of an arbitrary Ising graph, so heuristic
and meta-heuristic algorithms are often implemented as a means
of quickly obtaining approximate solutions [6]. Various physical
systems have been proposed as Ising machines, as the evolution
of many natural systems (ferromagnets [7], lipid membranes
[8], random photonic networks [9], etc.) can be described by
Hamiltonians similar to the one in Eq. (1). Parallel machines pro-
vide additional advantages by reducing the correlation between
consecutive samples and preventing premature trapping in local
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minima by applying many local modifications simultaneously
[10] and can also efficiently explore the phase space with many
independent searches running in parallel [1,11,12].

This observation motivates the development of
(re)configurable parallel analog machines, such as program-
mable nanophotonic processors [13–17]. The computational
speedup with these machines is still polynomial (since analog
machines also suffer from the P = N P paradigm [18]). However,
when operating at a fast clock rate (GHz), afforded by a pho-
tonic implementation, these optical architectures could enable
orders-of-magnitude speedups against conventional solvers [17].

A number of photonic Ising machines have been developed
in the past few years, based on various physical systems includ-
ing degenerate optical parametric oscillators (OPOs) [19,20],
fiber networks [21,22], injection-locked laser networks [23,24],
and spatial multiplexing [25]. Some of these (classical) Ising
machines even demonstrated performance superior to that of cer-
tain quantum annealers on dense graphs [26]. Experimental OPO
demonstrations [20,27–29] and recent theoretical proposals [30]
have shown great potential for finding optimal cuts of MAX-CUT
problems with large numbers of spins. However, all-optical OPO
machines face scaling limitations due to dispersion and decoher-
ence of the time-division-multiplexed pulses in increasingly large
resonators [28]. Additionally, some hybrid systems implement
couplings via matrix multiplication in a field-programmable gate
array (FPGA), and thus face scaling issues similar to those found in
traditional computing for large-scale multiplication [20]. While
massive spatial free-space multiplexing approaches [25] achieve
a very large number of spins (N ∼ 104), the spin couplings are
limited to N degrees of freedom [instead of O(N2) for arbitrary
Ising problems], and their clock rate is inherently slow (∼kHz).
These Ising machines also differ in the way they compute: while
the vast majority of them belongs to the class of heuristic solv-
ers, the OPO-based approach has been shown to operate as a
negative-temperature simulated annealing machine [31], and the
approach presented in Refs. [17,25] and in the present work belong
to the class of (positive temperature) Markov chain Monte Carlo
algorithms [1].

Here, we experimentally demonstrate a photonic recurrent
Ising sampler for probabilistically finding the ground state of
an arbitrary Ising problem. Using a programmable silicon-on-
insulator nanophotonic processor [14,15,17,32–34], we leverage
schemes for decomposing any unitary matrix into a mesh of linear
optical components [35,36] to enable sampling of arbitrary Ising
graphs. Furthermore, recent work on parallel photonic circuits
for optical neural networks has demonstrated the capability for
O(N) time-scaling for vector-matrix multiplication with an array
of tunable Mach–Zehnder interferometers (MZIs) [14]. While
digital electronics such as application-specific integrated circuits
(ASICs) or FPGAs can also exploit parallelization to achieve the
same time scaling, the architecture we demonstrate is additionally
compatible with quasi-passive photonic processing. As a result,
the time per iteration can be reduced from 5–100 ns in parallelized
digital hardware to 0.1–1 ns in passive integrated photonics [17].

2. METHODS

A. Theory

The proof-of-principle integrated nanophotonic recurrent Ising
sampler (INPRIS) is based on a recently proposed parallel photonic

recurrent network designed to find the ground state energies of
Ising problems [17]. The conceptual structure of a single algo-
rithm step of the N-spin photonic recurrent network is shown in
Fig. 1(b). At time step t , the spin state vector ES(t) ∈ {0, 1}N (equiv-
alent to σ (t)i = 2S(t)i − 1 ∈ {−1, 1}) is encoded in the amplitudes
of N coherent optical signals at the input. During each algorithm
step, the optically encoded spin state vector propagates through
an array of optical components that encodes an arbitrarily recon-
figurable N × N optical matrix [14,15,35], C, that is fixed and
dependent on the problem-specific Ising coupling matrix, K. The
output of the matrix multiplication is noisy, being perturbed by a
Gaussian noise source with standard deviation φ. This Gaussian
perturbation to the signal could be realized with electrical or optical
modulation of the refractive index, or via quantum detection noise
[27]. The output of the noisy matrix multiplication is then fed to
an optoelectronic threshold operation, f Eθth , where Eθth is a vector
of threshold values, that converts the continuous output vector
back into a binary spin state, ES(t+1)

∈ {0, 1}N . In combination,
the sampler calculates the input spins for the subsequent algorithm
step using the following expression:

ES(t+1)
= f Eθth

(
N
(
CES(t), φ

))
, (2)

where N (µ, φ) is the normal distribution with mean, µ, and
standard deviation,φ.

After many algorithm steps, the output spin state probability
distribution converges to an Ising Gibbs distribution (independent
of the initial spin state) [17]:

lim
t→∞

P (Eσ (t))∝ exp[−βHL(Eσ
(t))], (3)

HL(Eσ)=−
1

β

∑
i

log cosh

β∑
j

J ijσ j

 (4)

≈ βH(JT J)(Eσ), (5)

where C= 2J is the matrix implemented by the optical circuit, and
β = 1/(kφ) (k being a constant that depends only on the noise
distribution present in the system). The effective Hamiltonian of
the system HL can be approximated by an Ising Hamiltonian with
weights J2 for small β (corresponding to large noise, φ) and sym-
metric J. Therefore, to probe a symmetric Ising coupling matrix,
K=UDU†, with UDU† being the eigenvalue decomposition of
K, we program the optical matrix to implement the square root of
K. The square root motivates us to express the optically applied
diagonal matrix in the form Dα = Re(

√
D+ α1). The term α1

is a diagonal offset matrix with 1> 0, and α is a scalar dropout
parameter that allows us to tune the dimensionality of the ground
state search by selectively dropping out lower negative eigenvalues
(the choice of parameters is described in Ref. [17]). In the follow-
ing, we will refer to α = 1 as no dropout (none of the eigenvalues
is dropped out, as D+ α1 is positive semidefinite) and α = 0 as
dropout (the negative eigenvalues of D+ α1 are set to zero by
taking the real part). In our algorithm, the eigenvalue dropout
parameter is a fixed transformation on the coupling matrix, unlike
dropout encountered in machine learning, which is a dynamic
technique to prevent overfitting when training neural networks
[37].

To illustrate an example ground state search of the parallel
photonic network architecture, we simulate a two-dimensional
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Fig. 1. Photonic recurrent Ising sampler. (a) An arbitrary Ising graph described by a coupling matrix K is processed to produce the fixed transforma-
tion for the recurrent sampler, shown in (b). (b) Single algorithm iteration of the photonic recurrent Ising sampler. An in-phase optical signal encoding a
spin state is fed to an optical matrix multiplication unit encoding C= 2

√
K, where K is the coupling matrix of the desired Ising graph. The output signal

is noisy, with a distribution that is Gaussian with standard deviation φ, and goes through an analog nonlinear unit before being fed back to the chip input.
Considering as an example a nine-spin 2D antiferromagnetic graph, with coupling and ground state shown in (c), the simulated energy evolution as a func-
tion of time is shown in (d). (e) Simulated energy distribution of the optical output, which converges in probability to the Gibbs distribution of the associ-
ated Ising problem [Eq. (3)], for which the ground state (c) is exponentially more likely than higher-energy states at low temperatures.

antiferromagnet with periodic boundary conditions and iden-
tical nearest-neighbor couplings, K ij =−1, shown in Fig. 1(c).
After several algorithm steps, the optical output converges to a
probability distribution that matches the Gibbs distribution with
energy described in Eq. (3). Thus, the ground state with energy
Hmin [every spin having opposite direction to its nearest neighbors,
shown in Fig. 1(c)] is most likely, which can be readily observed in
the simulated optical output [Fig. 1(d)]. The expected Gibbs-like
energy distribution is also readily observable on the simulated
energy output distribution [Fig. 1(e)].

B. Experimental Demonstration

The experimental INPRIS demonstration presented in this work
finds the ground state of various four-spin Ising problems with
arbitrary graph couplings, using noise as a resource to enable con-
vergence to the ground state. The optical matrix multiplication
update step, CES(t) [from Eq. (2)], is broken down into three stages,
motivated by the eigenvalue decomposition of the Ising weight
matrix K. The two unitary matrix multiplication steps, U† and
U, are implemented in a programmable nanophotonic proces-
sor (PNP) [15,16] comprising a unitary mesh of tunable MZIs
[Fig. 2(b)]. The diagonal matrix Dα is currently performed on an
external CPU but could also be implemented optically with an
electro-optic attenuator, a modulator, or a single MZI [14,38–41].
In future implementations, the optical diagonal matrix should also
be tunable, as Dα is a function of the eigenvalue dropout hyperpa-
rameter, α. For this demonstration, we consider only two values

α = {0, 1}, but a more in-depth discussion of a proposed future
implementation is presented in Supplement 1, Section 3.

Our experimental setup (Fig. 2) consists of a 1550 nm laser
feeding one port of the PNP, then routed [red MZIs in Fig. 2(b)]
to a 5× 5 unitary processor comprising 13 individually ther-
mally tunable MZIs [42] [green MZIs in Fig. 2(b)], controlled
by a microcontroller. The output intensities of each spatial wave-
guide in the PNP are measured by an InGaAs photodiode array
and subjected to the set of nonlinear transformations outlined in
Eq. (2) and Fig. 2(c) (phase-intensity reconstruction, addition of
extrinsic Gaussian noise, and nonlinear threshold unit), currently
implemented in an external CPU. The output of these electronic
transformations then determines the PNP phase setting at the next
algorithm step, and so forth.

To maximize the number of spins that can be handled by a single
PNP, we broke down the algorithm step shown in Fig. 1(b) into
multiple runs on the PNP, such that each run required only one
matrix to be encoded on the chip [shown in Fig. 2(c)]. During
each run, the PNP implements a unitary matrix of the form
hi VR[S(τ )] [i ∈ 1, 2, Fig. 2(c)], where R[S(τ )] rotates the PNP
input (1, 0, 0, 0, 0)T into vector S(τ ), τ is the integer (resp. half-
integer) number of algorithm steps, and S(τ ) is the current spin
state (resp. an intermediate result after multiplication by DU†).
V corresponds to one of the two unitary matrices involved in the
eigenvalue decomposition of K (V ∈ {U,U†

}), and h1 (resp. h2)
is a homodyne matrix interfering PNP outputs 1 with 2 and 3
with 4 (resp. 2 with 3 and 4 with 5). We use the PNP output 1 as
an idler signal of known amplitude and phase to reconstruct the

https://doi.org/10.6084/m9.figshare.12155646
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Fig. 2. Experimental realization of integrated nanophotonic coherent Ising sampler. (a) A 1550 nm laser diode is coupled to a single input port of a
silicon-on-insulator programmable nanophotonic processor (PNP). Output mode intensities are measured with an InGaAs photodiode array, then pro-
cessed in the electronic domain to determine PNP phase settings for the next iteration. (b) The PNP comprises 88 Mach–Zehnder interferometers with 176
individually controlled thermal phase shifters [15,16] and encodes a circuit consisting of input routing (red) and a U(5) unitary matrix (green). (c) Each
algorithm step, shown conceptually in Fig. 1(b), requires four passes through the PNP chip. Each use of the chip performs a unitary matrix product of a
state-preparation rotation matrix R, the desired unitary (U or U†), and one of two homodyne detection matrices (h1 or h2). Phase-intensity reconstruction,
a diagonal matrix multiplication, Gaussian noise addition, and a nonlinear threshold unit are applied in the electronic domain.

phase and amplitude of every other output in a cascaded manner
(more details on the experimental setup is given in Supplement 1,
Section 1).

Consequently, a single algorithm step of the INPRIS, shown
in Fig. 1(b), is performed with four runs on the PNP in our proof-
of-concept experiment (two unitary matrices, each requiring two
homodyne measurements to reconstruct the amplitude and phase
of the output vector). The required reconfiguration of the PNP
phases for each of these runs, due to the state-dependent R[S(τ )]
and homodyne matrices hi , introduces an intrinsic noise on the
measured outputs of the photonic system with standard deviation
φint, which depends on the single-shot fidelity of the encoded
PNP transformations (the measured single-shot fidelity of the
PNP was 91.6%—Supplement 1, Section 2). We emphasize that,
unlike our experimental demonstration of optical neural networks
[14], a deterministic PNP crosstalk correction step is performed
just once before each PNP run, and that additional phase shifter
optimization using a detection feedback loop is not required to
optimize unitary fidelity. This high single-shot fidelity allows us
to achieve low enough noise levels to probe Gibbs distribution in
their ordered phase, while circumventing the increased complexity
required to perform fidelity optimization at each iteration. This
single-shot scheme mimics a passive or low-bandwidth photonic
system, which motivates our treatment of non-idealities in the
detected PNP outputs due to MZI phase settings as a separate
intrinsic noise at every algorithm step. We also perturb the mag-
nitude of each detected PNP output at the end of the algorithm
step with an extrinsic zero-mean Gaussian noise with standard
deviation φext via the CPU [see Gaussian noise unit in Fig. 2(c)].
Assuming the intrinsic contribution to the noise is also Gaussian,

these two independent sources of noise add to yield a total noise

levelφ =
√
φ2

int + φ
2
ext.

3. RESULTS

A. Ground State Search

Figures 3(b)–3(f ) show our main experimental results: the noise-
dependent ground state population for various four-spin Ising
models. Each data point is averaged over 10 solver instances with
randomized initial spin states and 100 algorithm steps per instance.
By comparing simulation results (green curves correspond to
ideal phase and amplitude reconstruction, while blue incorporate
our experimental homodyne scheme) with the larger number of
iterations in Figs. 3(b)–3(f ), we observe that 100 algorithm steps
are enough to converge to the ground state with high probabil-
ity. In addition, we observe that our samples within the first 100
iterations show increased ground state probability over a random
search [righthand plots in Figs. 3(b)–3(f )], with probabilities
that approach a Gibbs distribution. While we do observe that the
ground state is the most probable state for many of these graphs
after 100 algorithm steps, there is a graph-dependent burn-in time
required for the sampler to converge to steady-state dynamics [17].
The samples generated during the burn-in time are included in
the histograms in Figs. 3(b)–3(f ) and are responsible for some
decrease in ground state probability. Comparisons between the
measured energy state probabilities and a Gibbs distribution for all
sampled graphs and dropout levels are presented in Supplement 1,
Section 5.

Since we can adjust the total noise in the system by tuning
the extrinsic noise, φext, we can characterize the intrinsic noise
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Fig. 3. Evaluating physical observables and finding ground states with the integrated nanophotonic coherent Ising sampler. (a) Experimental evaluation
of the magnetization of a two-dimensional ferromagnet (red dots). The fit with theory allows us to evaluate intrinsic noise on the PNP φint = 0.6457.
(b)–(f ) Left: ground state probability as a function of extrinsic noise φext (orange), compared to simulated PNP with homodyne (blue) and ideal (green)
phase-intensity reconstruction. Right: energy histograms for value of φext showing best performance and comparison with random search. Inset: schematic
representation of the Ising model being modeled by the PNP. Green (resp. orange) lines between nodes represent +1 (resp.−1) couplings.

level, φint, by measuring the noise-dependent evolution of physi-
cal observables. Conventional physical observables describing
spin glasses (energy, magnetization, heat capacity, susceptibility,
etc.) can be calculated by using the thresholded PNP outputs
as samples of the Gibbs distribution [Eq. (3)]. Typically, these
samples would be simulated using a heuristic algorithm [1,3,43],
for instance, with conventional simulations run on a computer.
The measured absolute magnetization of a four-spin ferromagnet
with dropout, measured by our PNP proof of concept, is shown in
Fig. 3(a), which fits its theoretical value with a resulting intrinsic
noise φint = 0.6457. The simulated values (green and blue plots)
in Figs. 3(b)–3(f ) are calculated using the total noise level with
the experimentally fitted φint. This noise level naturally present
in the photonic system can be leveraged to drive the ground state
search, as can be seen in Figs. 3(b)–3(f ), which show the ground
state population for a variety of graphs (couplings shown in inset)
as a function of the extrinsic noise standard deviation φext applied
in the CPU. We notice that large ground state probabilities are
attained for φext = 0, meaning that the regime of optimal total
noise level is attained with little to no further addition of extrinsic
noise in the system. This observation suggests that the intrinsic
noise present in the hardware is already very close to the optimal
total noise level. Decreasing the intrinsic dynamic noise within the
system would enable sampling in regimes with lower total noise,
where an optimum for the added extrinsic noise can be found. This
decrease in precision can be addressed by using current sources to
modulate photonic active components instead of voltage drivers.
In addition, dedicating separate photonic circuits for passive and
active tasks will also reduce overall system infidelity. While noise
is usually considered a nuisance in most physical (computing)

systems, our experimental demonstration relies on physical noise,
coming from finite single-shot fidelity of the PNP. This sheds new
light on noise as a computational resource in physical comput-
ing systems. When injecting extrinsic (CPU-applied) noise to
the outputs at each algorithm step, we observe that the ground
state probability remains large and agrees with simulations of the
PNP that account for homodyne detection and phase-intensity
reconstruction. The ideal performance of the PNP is shown in
green for various numbers of algorithm steps per sampler instance,
thus demonstrating the effect of our cascaded homodyne detec-
tion scheme on the ground state convergence probability of the
INPRIS. Overall, the ground state probability is ≥80% for most
graphs at some dropout level (α = 0 or α = 1) and low extrinsic
noise levels, largely outperforming random search algorithms. We
also observe that experiments with dropout usually outperform
those without dropout, as expected from theory [17]. Extended
experimental results on ground state probabilities for all generated
graphs and dropout levels are available in Supplement 1, Section 5.

B. Phase Space Exploration

We further investigated the impact of the homodyne recon-
struction by probing the noise-dependent phase space of the
two-dimensional Ising ferromagnetic problem, shown in Figure 4.
The phase space population clearly shows a skew towards one of
the ground states σ = (−1,−1,−1,−1) (results are averaged
over 10 random initial states). We confirm this skew originates
from the cascaded homodyne detection by comparing the phase
space population to simulations with (blue) and without (green)
homodyne detections for the ferromagnetic graph (see Supplement
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Fig. 4. Phase space probing by extrinsic noise injection on ferromagnet
problem. The area of each dot is proportional to the measured mean prob-
ability of observing the system in state (y , x ) at a given extrinsic noise level
φext, where y = (σ1, σ2) is the state of spins 1 and 2, and x = (σ3, σ4) is
the state of spins 3 and 4.

1, Section 6). Since this skew breaks the two-fold degeneracy of the
two-dimensional Ising problem, we presume that part of the phase
information was lost through the reconstruction. To bypass this
skew, we suggest scalable homodyne detection schemes that require
more than one idler channel, in Supplement 1, Section 1. We
observe that the skew does not seem to prevent the algorithm from
converging to ground states but may complexify the evaluation of
some physical observables. Interestingly, frozen transient states—
which can be eliminated by reducing the pump amplitude—have
also been observed in the OPO Ising machine [44]. As additional
extrinsic noise is injected into the system, we observe that the phase
space recovers its symmetry, thus providing an estimate for the
amplitude of the skew in our photonic system.

Fabrication imperfections in photonic networks could be a
significant bottleneck in scaling integrated nanophotonic coherent
Ising samplers to large (N > 100) graph orders. For instance, a
static skew on the phase setting or the split ratio of beam splitters
will result in a static error on the effective coupling between spins,
thus reshaping the Hamiltonian landscape, which could impact
the algorithm efficiency [17]. Thus, the reduction of imperfections
is of paramount importance in the realization of the INPRIS on
large-scale static photonic networks. However, several calibration
techniques have been developed to achieve precise linear optical
functions with broad process tolerances [45,46]. The bandwidth
and energy cost of thermal phase shifters is another bottleneck
in increasing the size of photonic networks. A significant advan-
tage of the INPRIS over learning-based methods that require
reconfiguration of the PNP phases at every algorithm step [17]
is that the phase reconfiguration bandwidth is irrelevant in char-
acterizing the algorithm efficiency, since it translates only in a
constant computational cost. Thus, a larger-scale INPRIS could
be enabled by different architectures that do not suffer from this
bottleneck and could operate at very low power levels. Examples
include 3D-printed free-space optical networks [47] and silicon

photonic networks combined with non-volatile phase-change
materials [48].

4. DISCUSSION

To conclude, we introduce the INPRIS, a photonic circuit able
to probe the Gibbs distribution of arbitrary Ising problems. We
demonstrate a proof-of-concept experiment on a PNP that exhibits
high success probability on a variety of four-spin graphs. We
show that noise coming from the PNP-limited single-shot fidelity
allows the system to operate close to its optimal noise regime,
required to find ground states of Ising problems. Conversely, the
influence of sources of noise of various origins (extrinsic versus
intrinsic) and natures (static skew versus dynamic) is readily seen
on physical observables such as magnetization, ground state pop-
ulation, and phase space distribution. Additionally, we observe
agreement between the measured ground state probabilities and
those predicted in simulation, suggesting the possibility of using
simulated scaling predictions for this architecture, such as those
presented in Supplement 1, Fig. 10 in [17], to motivate perform-
ance predictions of future large-scale systems with passive photonic
components. We include a treatment of timing for a large-scale
system in Supplement 1, Section 4.A. In fully passive networks,
other sources of noise should be leveraged. For instance, recent
work on large-scale photoelectric networks naturally demonstrates
Gaussian noise on their outputs, arising at the quantum limit
(and thus suggesting the operation of a very large-scale INPRIS
that reaches the thermodynamic limit, relevant for simulations
in statistical mechanics with N ∼ 106, that can reach attojoule
energy consumption per algorithm unit step) [27]. Furthermore,
the photonic circuit program for this architecture is fixed for any
given coupling configuration. This feature enables the potential
for quasi-passive photonic ASICs, such as non-volatile photonic
ASICs [48–50], that could deliver speed and energy savings over
other physical Ising machines with active components.

Following an analysis similar to the one presented in Ref. [14],
we can compare the energy consumption for a future INPRIS with
that of graphics processing unit (GPU) hardware. Each iteration
of the algorithm requires a matrix multiplication consisting of
2N2 floating-point operations (FLOPs). For a proposed pas-
sive photonic system operating at a realistic clock rate of 1 GHz,
one would need to perform 2N2

∗ 109 FLOP/s. As detailed in
Supplement 1, Section 4.B: we estimate the power consumption
of the photonic system to be (18N)mW. These values correspond
to an energy consumption per FLOP of∼(9/N) pJ/FLOP. At the
time of writing, a state-of-the-art NVIDIA V100 GPU operating
at a comparable precision of 16-bit consumes 2.2 pJ/FLOP [51],
suggesting an energy scaling advantage for a passive photonic
architecture as the graph size increases.

This work also paves the way to larger-scale INPRISs by iden-
tifying key tradeoffs in their design. While homodyne detection
allows the reconstruction of the spin state phase and amplitude, an
increased number of idler signals will increase the PNP footprint
for a given number of spins and determine the overall accuracy of
this operation. Other tradeoffs, such as optimal values of eigen-
value dropout [17], should be taken into account when designing
quasi-passive photonic GHz INPRISs on ASICs which could out-
perform current optical and electronic Ising machines by several
orders of magnitude [20,26,28].
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and R. J. Ram, “Integrating photonics with silicon nanoelectronics for
the next generation of systems on a chip,” Nature 556, 349–354 (2018).

42. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg,
and C. Galland, “Efficient, compact and low loss thermo-optic phase
shifter in silicon,” Opt. Express 22, 10487 (2014).

43. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680 (1983).

44. F. Böhm, T. Inagaki, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R.
Kasahara, and H. Takesue, “Understanding dynamics of coherent
Ising machines through simulation of large-scale 2D Ising models,” Nat.
Commun. 9, 5020 (2018).

45. D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2,
747 (2015).

46. R. Burgwal, W. R. Clements, D. H. Smith, J. C. Gates, W. S. Kolthammer,
J. J. Renema, and I. A. Walmsley, “Using an imperfect photonic network
to implement random unitaries,” Opt. Express 25, 28236 (2017).

47. X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A.
Ozcan, “All-optical machine learning using diffractive deep neural
networks,” Science 361, 1004–1008 (2018).

48. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng,
and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic
devices based on phase change materials,” Nat. Photonics 10, 60–65
(2016).

49. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide
photonics,” Nat. Photonics 5, 141 (2011).

50. C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm,
M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable
phase-change metadevices for beam steering in the near infrared,” Adv.
Funct. Mater. 28, 1704993 (2018).

51. NVIDIA Corporation, “NVIDIA V100 TENSOR CORE GPU,” Tech. rep.
(2020).

https://doi.org/10.1109/JSTQE.2013.2263115
https://doi.org/10.1007/s12274-010-0082-9
https://doi.org/10.1038/nature03569
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1364/OE.22.010487
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1038/s41467-018-07328-1
https://doi.org/10.1038/s41467-018-07328-1
https://doi.org/10.1364/OPTICA.2.000747
https://doi.org/10.1364/OE.25.028236
https://doi.org/10.1126/science.aat8084
https://doi.org/10.1038/nphoton.2015.247
https://doi.org/10.1038/nphoton.2011.309
https://doi.org/10.1002/adfm.201704993
https://doi.org/10.1002/adfm.201704993

