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Quantum optical neural networks
Gregory R. Steinbrecher1, Jonathan P. Olson2, Dirk Englund 1 and Jacques Carolan1

Physically motivated quantum algorithms for specific near-term quantum hardware will likely be the next frontier in quantum
information science. Here, we show how many of the features of neural networks for machine learning can naturally be mapped
into the quantum optical domain by introducing the quantum optical neural network (QONN). Through numerical simulation and
analysis we train the QONN to perform a range of quantum information processing tasks, including newly developed protocols for
quantum optical state compression, reinforcement learning, black-box quantum simulation, and one-way quantum repeaters. We
consistently demonstrate that our system can generalize from only a small set of training data onto inputs for which it has not been
trained. Our results indicate that QONNs are a powerful design tool for quantum optical systems and, leveraging advances in
integrated quantum photonics, a promising architecture for next-generation quantum processors.
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INTRODUCTION
Deep learning is revolutionizing computing1 for an ever-increasing
range of applications, from natural language processing2 to
particle physics3 to cancer diagnosis.4 These advances have been
made possible by a combination of algorithmic design5 and
dedicated hardware development.6 Quantum computing,7 while
more nascent, is experiencing a similar trajectory, with a rapidly
closing gap between current hardware and the scale required for
practical implementation of quantum algorithms. Error rates on
individual quantum bits (qubits) have steadily decreased,8 and the
number and connectivity of qubits have improved,9 making the
so-called noisy intermediate-scale quantum (NISQ) processors10

capable of tasks too hard for a classical computer a near-term
prospect. Experimental progress has been met with algorithmic
advances11 and near-term quantum algorithms have been
developed to tackle problems in combinatorics,12 quantum
chemistry,13 and solid-state physics.14 However, it is only recently
that the potential for quantum processors to accelerate machine
learning has been explored.15

Quantum machine learning algorithms for universal quantum
computers have been proposed16 and small-scale demonstrations
implemented.17 Relaxing the requirement of universality, quan-
tum machine learning for NISQ processors has emerged as a
rapidly advancing field18–22 that may provide a plausible route
towards practical quantum-enhanced machine learning systems.
These protocols typically map features of machine learning
algorithms (such as hidden layers in a neural network) directly
onto a shallow quantum circuits in a platform-independent
manner. In contrast, the work presented here leverages features
unique to a particular physical platform.
Although the demonstration of an unambiguous quantum

advantage in machine learning is an open question,23 an
increasing number of results and heuristic arguments indicate
quantum systems are well suited to addressing such computa-
tional tasks. First, certain classes of non-universal quantum
processor have been shown to sample from probability

distributions that, under plausible complexity theoretic conjec-
tures, cannot be sampled from classically.24 For example,
ensembles of non-interacting photons (which is a subclass of
the architecture presented here) sample from non-classical
distributions even without the optical nonlinearities required for
quantum universality.25,26 Speculatively, this may enable quantum
networks, in certain instances, to surpass classical networks in
both generative and recognition tasks.
Second, classical machine learning algorithms typically involve

many linear algebraic operations. Existing quantum algorithms
have already demonstrated theoretical speedups in problems
related to many of the most elementary algebraic operations such
as Fourier transforms,27 vector inner products,28 matrix eigenva-
lues and eigenvectors,29 and linear system solving.30 These
techniques may form parts of a toolkit enabling quantum machine
learning algorithms. Finally, certain physical systems, such as those
studied in quantum chemistry, are naturally encoded by quantum
information.31 Quantum features of these states, such as
coherence and entanglement, are naturally exploitable by net-
works that themselves are inherently quantum. Classical compu-
ters on the other hand require an exponential (in, for instance, the
number of spin orbitals of a molecule) amount of memory to even
encode such states.
In this work, we introduce an architecture that unites the

complexity of quantum optical systems with the versatility of
neural networks: the quantum optical neural network (QONN). We
argue that many of the features that are natural to quantum optics
(mode mixing, optical nonlinearity) can directly be mapped to
neural networks, and train our system to implement both
coherent quantum operations and classical learning tasks,
suggesting that our architecture is capable of much of the
functionality of both its parent platforms. Moreover, technological
advances driven by trends in photonic quantum computing32 and
the microelectronics industry33 offer a plausible route towards
large-scale, high-bandwidth QONNs, all within a CMOS (comple-
mentary-metal-oxide-semiconductor)-compatible platform.
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Through numerical simulation and analysis, we apply our
architecture to a number of key quantum information science
protocols. We benchmark the QONN by designing quantum
optical gates where circuit decompositions are already known.
Next, we show that our system can learn to simulate other
quantum systems using only a limited set of input/output state
pairs, generalizing what it learns to previously unseen inputs. We
demonstrate this learning on both Ising and Bose–Hubbard
Hamiltonians. We then introduce and test a new quantum optical
autoencoder protocol for compression of quantum information,
with applications in quantum communications and quantum
networks. This again relies on the ability to train our systems using
a subset of possible inputs. Next, we apply our system to a
classical machine learning controls task, balancing an inverted
pendulum, by a reinforcement learning approach. Finally, we train
the QONN to implement a one-way quantum repeater, whose
physical implementation was, until now, unknown. Our results
may find application both as an important technique for
designing next-generation quantum optical systems and as a
versatile experimental platform for near-term optical quantum
information processing and machine learning. Moreover, machine
learning protocols for NISQ processors typically operate on
quantum states for which there are no clear classical analog.
Similarly, the QONN may be able to perform inference on
quantum optical states, such as those generated by molecular
systems34 or states within a quantum network.35

In prototypical neural networks (see Fig. 1a) an input vector
~x 2 Rn is passed through multiple layers of: (1) linear transforma-
tion, that is, a matrix multiplication WðθiÞ:~x parameterized by
weights θi at layer i, and (2) nonlinear operations σð~xÞ, which are
single-site nonlinear functions sometimes parameterized by biases
~bi (typically referred to as the perceptron or neuron, see Fig. 1a,
inset for two examples: the rectifying neuron and the sigmoid
neuron). The goal of the neural network is to optimize the
parameter sets {θi} and {bi} to realize a particular input–output
function f ð~xÞ ¼ y. The power of neural networks lies in the fact
that when trained over a large data set f~xig, this often highly
nonlinear functional relationship is generalizable to a large vector
set to which the network was not exposed during training. For
example, in the context of cancer diagnosis, the input vectors may
be gray-scale values of pixels of an image of a cell, and the output
may be a two-dimensional vector that corresponds to the binary
label of the cell as either a benign or malignant.36 Once the
network is trained, it may categorize with high probability new,
unlabelled, images of cells as either “benign” or “malignant”.

RESULTS
Architecture
As shown in Fig. 1b, input data to our QONN is encoded as
photonic Fock states ij (corresponding to i photons in the jth

optical mode), which for n photons in m modes is described by a
nþm� 1

m

� �
-dimensional complex vector of unit magnitude. As

we will show, leveraging the full Fock space may be advantageous
for training certain classes of QONN. The linear circuit is described
by an m-mode linear optical unitary Uð~θÞ parameterized by a
vector~θ of m(m− 1) phases shifts θi 2 0; 2πð � via the encoding of
Reck et al.37 The nonlinear layer ∑ comprises single-mode Kerr
interactions in the monochromatic approximation, applying a
phase that is quadratic in the number of photons present.38 For a
given interaction strength ϕ, this unitary can be expressed as
Σ ϕð Þ ¼ P1

n¼0 e
inðn�1Þϕ=2jnihnj. The full system comprising N layers

is therefore

Sð~ΘÞ ¼
YN
i

ΣðϕÞ:Uð~θiÞ; (1)

where ~Θ is a Nm(m− 1)-dimensional vector and the strength of
the nonlinearity is typically fixed as ϕ= π. Finally, photon-number-
resolving detectors are used to measure the photon number at
each output. We consider number resolution without loss of
generality as the so-called threshold detectors (vacuum, or not)
can always be made non-deterministically number resolving via
beamsplitters and multiple detectors.39 We use the results of this
measurement, along with a training set of K desired input/output

pairs ψi
in

�� � ! ψi
out

�� �� �K
i¼1, to construct a cost function

C ~Θ
� 	

¼ 1� 1=K
XK
i¼1

ψi
out


 ��Sð~ΘÞ ψi
in

�� ���� ���2 (2)

that is variationally minimized over ~Θ to find a target transforma-
tion (up to an unobservable global phase). In the Supplementary
Information S2 we show that the QONN architecture is also
capable of implementing classical optical neural networks,40 and
may therefore benefit from advances in this rapidly growing
field.41

We distinguish between two approaches to training: in situ and
in silico. The in situ approach directly optimizes the quantum
optical processor and measurements are made via single photon
detectors at the end of the circuit. One aim is to optimize figures
of merit that can be estimated with a number of measurements
that scales polynomially with the photon number (as opposed to
full quantum process tomography).42 If the target state is
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Fig. 1 Quantum optical neural network (QONN). a An example of a classical neural network architecture. Hidden layers are rectified linear
units (ReLUs) and the output neuron uses a sigmoid activation function to map the output into the range (0, 1). b An example of our quantum
optical neural network (QONN) architecture. Inputs are single photon Fock states. The single-site nonlinearities are given a Kerr-type
interaction applying a phase quadratic in the number of photons. Readout is given by photon-number-resolving detectors, which measure
the photon number at each output mode
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accessible, the overlap can be estimated with the addition of a
controlled-SWAP operation, which is related to the
Hong–Ou–Mandel effect in quantum optics.43 Efficient fidelity
proxies provide another route towards estimating salient features
of quantum states without reconstruction of the full density
matrix.44 Moreover, the in situ approach may enable a form of
error mitigation by routing quantum information around faulty
hardware.45 In contrast, the in silico approach simulates the QONN
on a digital classical computer and keeps track of the full quantum
state internal to the system. Simulations will therefore be limited
in scale, but may help guide the design of, say, quantum gates
where the optimal decomposition is not already known, or as an
ansatz for the in situ approach. In the Methods, we detail the
computational techniques used in this work.

Hardware implementation
A number of the key components of QONNs are readily
implementable using state-of-the-art integrated quantum photo-
nics. First, matrix multiplication can be realized across optical
modes (where each mode contains a complex electric field
component) via arrays of beamsplitters and programmable phase
shifts.37,46 In the lossless case, an n-mode optical circuit
comprising n(n− 1) component implements an arbitrary n × n
single particle unitary operation (which can also be used for
classical neural networks),47 and a n-dimensional non-unitary
operation can always be embedded across a 2n-mode optical
circuit.48 Advances in integrated optics49 have enabled the
implementation of such circuits for applications in quantum
computation,50 quantum simulation,51 and classical optical neural
networks.40 Second, optical nonlinearities are a core component
of many classical52 and quantum53 optical computing architec-
tures. Single photon coherent nonlinearities can be implemented
via measurement,54 interaction with three-level atoms55 or super-
conducting materials,56 and through all-optical phenomena such
as the Kerr effect.57 Notably, promising progress has been made
towards solid-state waveguide-based nonlinearities.58 Third,
superconducting nanowire single photon detectors (SNSPDs)
enable ultra-efficient single photon readout, either via low-loss
out-coupling59 to a dedicated high-efficiency detection system60

or through the direct integration of SNSPDs on chip.61 Moreover,
advances in electronic readout have made it is possible to scale
SNSPDs across many channels and with photon-number resolu-
tion.62 While incorporating these technologies into a single
scalable system is an outstanding challenge, hybrid integration
techniques provide a path towards combining otherwise incom-
patible material platforms.63

In this work, we focus on discrete variable QONNs due to the
maturity of the technology platform, but note that continuous
variable implementations are also promising.64 Our discrete
variable architecture can naturally be mapped to other platforms
that manipulate bosonic modes such as ultracold atoms,65

superconducting cavities,66 or phononic modes in trapped ions.67

In each of these platforms, significant progress has been made
towards reconfigurable linear mode transformations68 to compli-
ment pre-existing ultra-strong nonlinearities, thus making bosonic
quantum simulators excellent candidates for near-term QONNs.

Benchmarking
As a first step in validating our architecture, we ensure it can learn
elementary quantum tasks such as quantum state preparation,
measurement, and quantum gates. We chose Bell-state projec-
tion/generation, Greenberger–Horne–Zeilinger (GHZ) state gen-
eration, and the implementation of the controlled NOT (CNOT)
gate as representative of typical optical quantum information
tasks. As described in the Methods section, in each of these cases
the training set represents the full basis set for the quantum
operation of interest, and successful training tells us something
about the expressivity of our architecture.
We trained QONNs of increasing layer depth from N = 2→ 10

with ϕ= π. As shown in Fig. 2, at short layer depths the
optimization frequently terminates early, finding a non-optimal
local minima. We observe similar behavior for all of the studied
tasks. Most notable here is the behavior of the optimization as the
layer count increases: just like a classical neural network, as we
increase the layer depth, it becomes consistently easy to find a
local minimum that is close to the global minimum. This
demonstrates the utility of deep networks: while a single layer
may be sufficient to implement, for exampe, a CNOT gate, with

Fig. 2 Benchmarking results. The first nine figures show 50 training runs for each of three representative optical quantum computing tasks:
performing a controlled NOT (CNOT) gate, separating/generating Bell states, and generating GHZ states. Evaluation number is defined as the
number of updates of ~Θ. At low layer depth, the optimizations frequently fail to converge to an optimal value (we defined an error <10−4 as
“success”), terminating at relatively large errors. This behavior gets worse as we add layers, out to five layers, at which point it undergoes a
rapid reversal, with the training essentially always succeeding at layer depths of seven or more. This is shown in the final figure, where success
percentage is plotted against the number of layers for each of the three tasks. The non-monotonic behavior is due to the large variance in
final costs at low layer number. In Supplementary Information S1 we plot layer number against median error, recovering the expected
monotonic behavior
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deep networks we can reliably discover a configuration that yields
the correct operation. For more complex operations, where the
small-layer-number implementation may be difficult to find or
simply not exist, this gives hope that we can still reliably train a
deep network to perform the task. While the inputs and desired
outputs are restricted to the dual-rail basis, we have verified that
at intermediate layers the joint state of the photons span the
entire Fock space, which is a unique feature of photonic systems.
In the Supplementary Information S3 we examine the trade-off
between nonlinear interaction strength and gate fidelity.

Hamiltonian simulation
While the results thus far benchmark the training of the QONN, a
critical feature of any learning system is that it can generalize to
states on which it has not been trained. To assess generalization,
we apply the QONN to the task of quantum simulation, whereby a
well-controlled system in the laboratory Sð~ΘÞ is programmed over
parameters ~Θ to mimic the evolution of a quantum system of
interest described by the Hamiltonian Ĥ. In particular, we train our
QONN on K sets of input/output states fjψi

inig fjψi
outig related by

the Hamiltonian of interest ψi
out

�� � ¼ expð�iĤtÞ ψi
in

�� �
, and test it on

new states which it has not been exposed to.
As a first test we look at the Ising model (see Methods section),

which is optically implemented via a dual-rail encoding with m=
2n, where |↑〉≡ |10〉12 and |↓〉≡ |01〉12. For the n= 2 spin case, we
train the QONN on a training set of 20 random two-photon states
and test it on 50 different states. We empirically determine that for
a wide range of J/B values (with t= 1), a three-layer QONN reliably
converges to an optimum. In Fig. 3a we vary the interaction
strength J/B and plot the probability of finding a particular spin
configuration given an initialization state |↑↑〉. Critically, this input
state is not in set of states for which the QONN was trained. We

also train our QONN for the n= 3 spin case, reaching an average
test error of 10.1%. This higher error in the larger system motivates
the need for advanced training methods such as backpropaga-
tion69 or layer-wise training approaches70 to efficiently train
deeper QONN.
Finally, we look at a Hamiltonian more natural for photons in

optical modes, the Bose–Hubbard model, see Methods section for
further details. Now, the (n, m) configuration of bosons to be
simulated is naturally mapped to an n-photon m-mode photonic
system.
To benchmark our system, we look at the number of layers

required to express a (2, 4) strongly interacting Bose–Hubbard
model on a square lattice (Fig. 3b, inset). Figure 3b shows that
increasing the number of layers reduces the error on the test set,
suggesting that deeper networks can express a richer class of
quantum functions (i.e. Hamiltonians); a concept familiar in
classical deep neural networks.71 Choosing five layers to give a
reasonable trade-off between error (~1%) and computational
tractability, we vary the interaction strength in the the range U/
thop∈ [−20, 20]. Across all numerical simulations we achieve a
mean test error of 2.9 ± 1.3% (error given by the standard
deviation in 22 simulations).
While our analysis has focused on Hamiltonians that exist in

nature, the approach itself is very general: mimicking
input–output configurations given access to a reduced set of
input–output pairs from some family of quantum states. This may
find application in learning representations of quantum systems
where circuit decompositions are unknown, or finding compiled
implementations of known circuits.

Quantum optical autoencoder
Photons play a critical role in virtually all quantum communication
and quantum networking protocols, either as information carriers
themselves or to mediate interactions between long-lived atomic
memories.72 However, such schemes are exponentially sensitive to
loss: given a channel transmissivity η and the number of photons
n required to encode a message, the probability of successful
transmission scales as ηn. Reducing the photon number while
maintaining the information content, therefore, exponentially
increases the communication rate. In the following we use the
QONN as a quantum autoencoder to learn a compressed
representation of quantum states. This compressed representation
could be used, for example, to more efficiently and reliably
exchange information between physically separated quantum
nodes.35

Quantum autoencoders have been proposed as a general
technique for encoding, or compressing, a family of states on n
qubits to a lower-dimensional k-qubit manifold called the latent
space.73,74 Similar to classical autoencoders, a quantum auto-
encoder learns to generalize from a small training set T and is able
to compress states from the family that it has not previously seen.
As well as applications in quantum communication and quantum
memory, it has recently been proposed as a subroutine to
augment variational algorithms in finding more efficient device-
specific ansatzes.75 In contrast, the quantum optical autoencoder
encodes input states in the Fock basis. Moreover, even if optical
input states are encoded in the dual-rail qubit basis, the
autoencoder may learn a compression onto a non-
computational Fock basis latent space.
As a choice of a family of states, and one which is relevant to

quantum chemistry on NISQ processors, we consider the set of
ground states of molecular hydrogen, H2, in the STO-3G minimal
basis set,76 mapped from their fermionic representation into
qubits via the Jordan–Wigner transformation.77 Ground states in
this qubit basis have the form |ψ(i)〉= α(i)|0011〉L+ β(i)|1100〉L,
where i is the bond length of the ground state. The qubits
themselves are represented in a dual-rail encoding thus the

Fig. 3 Quantum optical neural networks (QONNs) for Hamiltonian
simulation. a Ising model. A three-layer QONN is trained for a range
of interaction strengths J/B∈ [−5, 5] and the probability for
particular output spin configuration is plotted (points) given the
|↑↑〉 initialization state. The expected evolution is plotted alongside
(lines). Critically, during the training process our QONN was never
exposed to the initialization state. b Bose–Hubbard model. Number
of layers required to reach a particular test error for the simulation of
a (2,4) strongly interacting U/thop= 20 Bose–Hubbard Hamiltonian
(schematic shown in inset) with t= 1. Training is performed 20 times
for each layer depth, and the lowest test error is recorded. The
single-layer system gives a mean error in the test set of 42% and
seven layers yields an error of 0.1%
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network consists of n= 4 photons in m= 8 optical modes. We
note that the set of states {|ψi〉} are no longer related by a single
unitary transformation as in previous sections.
The goal of the quantum optical autoencoder S is for all states

in the training set |ψi〉∈ K, satisfying

S ψij i ¼ 000j iL ψC
i

�� �
(3)

for some two-mode state ψC
i

�� �
in the latent space. The quantum

autoencoder can therefore be seen as an algorithm that system-
atically disentangles n− k qubits from the set of input states and
sets them to a fixed reference state (e.g., 0j i�n�k

L ). For this reason,
the fidelity of the reference state will be used a proxy for the
fidelity of the decoded state.
To train a quantum autoencoder one should choose a circuit

architecture with general enough operations to compress the
input states, but few enough parameters to train the network
efficiently. As shown in Fig. 4a, b, we test three training schemes
for the QONN autoencoder: (1) locally structured training (Fig. 4a,
blue): sequentially optimizing two-layer QONNs to disentangle a
single qubit at each stage, where each subsequent stage acts only
on a reduced qubit subspace. This approach is followed by a final
global refinement step after all layers have been individually
trained; (2) globally structured training (Fig. 4a, orange): where the
above layer structure is trained simultaneously rather than
sequentially; and (3) globally unstructured training (Fig. 4b, green):
where a six-layer system acting on all four qubits is trained.

The optimization was performed using an implementation of
MLSL78 (also available in the NLopt library), which is a global
optimization algorithm that explores the cost function landscape
with a sequence of local optimizations (in this case BOBYQA) from
carefully chosen starting points, using a heuristic to avoid local
optima that have already been found. Our training states are the
set of four ground states of H2 corresponding to bond lengths of
0.5, 1.0, 1.5, and 2.0 Å. Both the global and iterative optimizations
performed comparably. However, we note that the the iterative
approach could potentially be made more efficient if more
stringent convergence criteria were introduced. The unstructured
optimization achieved a lower fidelity; however, it is unclear from
our data whether the iterative approach would have better scaling
or accuracy than the global optimization in an asymptotic setting.

Quantum reinforcement learning
To demonstrate the utility of QONNs for classical machine learning
tasks, and to show that they continue to generalize in that setting,
we examine a standard reinforcement learning problem: that of
trying to balance an inverted pendulum.79 Classical deep
reinforcement learning uses a policy network, that is, a network
that takes an observation vector as input and outputs a probability
distribution over the space of allowed actions. This probability
vector is then sampled to choose an action, a new observation is
taken, and the process repeats. As the output from a QONN is
inherently a probability distribution, policy networks are a natural
application. See Methods for further details.
We simulate a cart moving on a one-dimensional frictionless

track, with a pole on a hinge attached to its top (see Fig. 5c, inset).
At the beginning of the simulation, the cart is initialized to a
random position, with the pole at a random angle. At each time
step, the neural network receives four values, the position of the
cart x, its velocity _x, the angle of the pole with respect to the track
θ, and the time derivative of that angle _θ. From those four values,
it determines whether to apply a force of unit magnitude either in
the +x or −x directions; those are the only two options. Each run
of the simulation continues until a boundary condition in x, θ, or t
(tmax= 300) is reached (i.e., the cart runs into the edge of the track
or the pole falls over). The number of time steps before failure is
the fitness of that run; we want to make this as large as possible.
As shown in Fig. 5a, b we demonstrate training using two

different input encodings. First, we directly encode the four
observation values x, _x, θ, and _θ onto four dual-rail qubits. Second,
we encode these four values onto a uniform quantum state over
two qubits, a type of quantum random access memory (QRAM)
encoding. While it is unknown in general how to efficiently
encode a given state into a QRAM, this numerical simulation
demonstrates that these networks are capable of learning from
general, highly entangled, quantum states, not just those with
direct classical analogs.
Both encodings are performed by first compressing each of the

four observation variables into γj∈ [0, π/2] (j ∈ {1, …, 4}). For the
direct encoding, each qubit qj is set to cos(γj)|0〉L+ sin(γj)|1〉L. For
the QRAM encoding, the state over the two input qubits is set to
1
4 eiγ1 00j iLþeiγ2 01j iLþeiγ3 10j iLþeiγ4 11j iL
� �

. Finally, the QRAM
encoding is given an ancilla qubit to act as phase reference.
We use this qubit encoding only for ease of encoding; after this

point, we no longer regard the photons as qubits and simply
measure the output state, potentially increasing the computa-
tional power of the system. In both systems, we picked the
arbitrary measure of “number of photons in mode 1” vs. “number
of photons in mode 2”: if the number of photons in the first mode
exceeds the number in the second mode, we apply a force in the
−x direction; otherwise, we apply a force in the +x direction.
Finally, we train these networks using an evolutionary strategies
method.80

Fig. 4 Quantum optical autoencoder. a, b Schematics of the
quantum optical neural network (QONN) architectures correspond-
ing to each of the three training strategies. While the architecture of
the globally structured (a, orange) and globally unstructured
(b, green) optimizations remained the same throughout the entire
optimization, the locally structured approach (a, blue) optimized the
parameters of (1) U1 and V1 first (with the nonlinear layer shown in
green), before moving on to (2) U2 and V2, and in the third phase (3)
U3 and V3. The final refinement step of the iterative approach (4)
considered all parameters in the optimization, similar to the global
strategy. c A plot of the fidelities of the reference states achieved by
the different training strategies to compress ground states of
molecular hydrogen. While the global (orange) and unstructured
(orange) optimizations included all three reference qubits from the
start, the large drops in fidelity for the iterative procedure (blue) are
due to including increasingly more reference states in the
optimization. The global and iterative methods converge to a
fidelity of 92.2% and 90.0%, respectively, and unstructured
achieved 76.2%
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In Fig. 5c we show the results of five training cycles (each with
different starting conditions) using a six-layer QONN. For each
cycle, we use a batch size of 100 to determine the approximate
gradient, and average the fitness over 80 distinct runs of the
network at each ~Θ we evaluate. Hyperparameters (layer depth,
batch size, and averaging group) were tuned using linear sweeps.
These values apply to both the direct and QRAM encodings.
Fitness increases with training generation, meaning the QONN
consistently learns to balance the pole for longer times as
generation increases; that is, it generalizes examples it has
previously seen to new instances of the problem.
To cross-check our performance we trained equivalently sized

classical networks, that is, four-neuron, six-layer networks with
constant width. Hidden layers had ReLu neurons, while the final
layer was a single sigmoid neuron to generate a probability
p∈ 0, 1) of applying force in the −x direction. We used the same
training strategy for the classical networks as for the QONNs and
observed a comparable performance, with a mean fitness after
1000 generations in the classical case of 37.1 compared with 61.9
for the directly encoded QONN and 136.1 for the QRAM encoded
QONN. The direct encoding took ~5000 generations to reach a
comparable fitness as the QRAM. Both networks can likely be
optimized, and one should be cautious in directly comparing the
classical and quantum results. Notwithstanding, this exploratory
work demonstrates that quantum systems can learn on physically

relevant data, and future directions will seek to leverage uniquely
quantum properties such as superposition for batch learning.81

One-way quantum repeaters
Finally, to demonstrate both the flexibility of the QONN platform
and the advantages of co-designing both the architecture and the
physical platform, we demonstrate the realization of one-way
quantum repeaters. The goal of a one-way quantum repeater is
equivalent to that of forward error correction in classical
communications: to distribute the information over several
symbols in such a way that even if errors occur, the original
information can still be recovered. In quantum optics the primary
error mechanism is loss; therefore, one should encode a single
qubit of information across n photons such that if m ≤ k photons
are lost (for a k-loss tolerant code), the state can be repaired
without round trip communications between the sender and the
receiver (see Fig. 6a). Loss correction techniques are critical both
for quantum communications over distance82 and protecting
qubits in photonic quantum computing schemes.83

In this work, we focus on a recent proposal for unitary one-way
quantum repeaters, which do not require measurements or
quantum memories.84 While it can be shown that Hamiltonians
for one-way repeaters exist, the question of how to realize these
with physical components remains open. Here we train the QONN
architecture to implement such quantum repeater schemes,
demonstrating the utility of physically realizable variational
quantum architectures.
We consider the two-mode code

0j iL � 40j i12þ 04j i12
� �

=
ffiffiffi
2

p
;

1j iL � 22j i12;
(4)

which is robust against single photon loss. It can be shown that for
an input state |ψ〉L= α|0〉L+ β|1〉L, the loss of a single photon can
be corrected by a system Ŝ, which coherently performs the map

Ŝ 30j i12¼ 40j i12þ 04j i12
� �

=
ffiffiffi
2

p
; (5)

Ŝ 03j i12¼ 40j i12þ 04j i12
� �

=
ffiffiffi
2

p
; (6)

Ŝ 12j i12¼ 22j i12; (7)

Ŝ 21j i12¼ 21 21j i12: (8)

Mathematically, Ŝ â1ρâ
y
1

h i
Ŝy ¼ ρ and Ŝ â2ρâ

y
2

h i
Ŝy ¼ ρ, where

ρ= |ψ〉LL〈ψ|.
By photon-number preservation, Ŝ cannot be unitary on two

modes, but Ŝ can be realized as a unitary with additional ancilla. To
train the QONN to implement this mapping, we do the following: let
{|ψi〉L}i be the set of states 0j iL; 1j iL; 0j iLþ 1j iL

� �
=

ffiffiffi
2

p
;

�
0j iL� 1j iL

� �
=

ffiffiffi
2

p
; 0j iLþi 1j iL
� �

=
ffiffiffi
2

p
; 0j iL�i 1j iL
� �

=
ffiffiffi
2

p
:, and σi;j ¼

âjρi â
y
j . The action of Ŝ on the computational (non-ancilla) modes

with single photon loss is given by

σ
ðoutÞ
i;j ¼ TrA Ŝ σi;j � ρA

� �
Ŝy

� �
; (9)

where ρA is the input ancilla state. In the lossless case the output is
given by

ρ
ðoutÞ
i ¼ TrA Ŝ ρi � ρAð ÞŜy� �

: (10)

The desired system should be able to correct all inputs that
have single photon-loss error, and also leave the input undis-
turbed if there is no photon loss. This corresponds to the map
σ
ðoutÞ
i;j ¼ ρ

ðoutÞ
i ¼ ρi8i; j.

Numerically, we calculate a cost function that quantifies the
average distance (given by the Hilbert–Schmidt inner product
Tr AyB
� �

) between the six photon subtracted states and non-
photon subtracted states, and variationally optimize the QONN.

Fig. 5 Quantum reinforcement learning. a Architecture for the
directly encoded reinforcement learning network. Each observation
variable (x, _x, θ, and _θ) was mapped to a phase γ∈ [0, π/2] and the
corresponding dual-rail-encoded input qubit was set to sin(γ)0L+
cos(γ)1L. Each Θ layer is an independent arbitrary unitary transfor-
mation; the gray boxes represent single-site nonlinearities.
b Architecture for the quantum random access memory (QRAM-)
encoded reinforcement learning network. The observation values
were mapped to phases as in the direct architecture, which were
then encoded into the QRAM (see text). c Fitness vs. training
generation curves for five different training runs of each type of the
reinforcement learning QONN. A higher fitness corresponds to a
network that was able to keep the pole upright and the cart within
the bounds for more time. The direct encoding requires more
parameters and hence is slower to train. Inset: The problem we are
trying to solve, a cart on a bounded one-dimensional track with an
inverted pendulum on the top
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Due to the complexity of the system a backpropagation method
was developed and gradient-based optimization methods were
used, to achieve efficient and accurate training. Figure 6b plots the
average fidelity of the output states against the number of
nonlinear layers, reaching numerical precision at 50 layers. In
conclusion, the QONN yields an explicit optical construction of a
one-way quantum repeater, which was otherwise unknown. We
therefore anticipate other physically motivated variational archi-
tectures to yield insights which platform-independent approaches
cannot.

DISCUSSION
We have proposed an architecture for near-term quantum optical
systems that maps many of the auspicious features of classical
neural networks onto the quantum domain. Through numerical
simulation and analysis we have applied our QONN to a broad
range of quantum information processing tasks, including newly
developed protocols such as quantum optical state compression
for quantum networking and black-box quantum simulation.
Experimentally, advances in integrated photonics and nano-
fabrication have enabled monolithically integrated circuits with
many thousands of optoelectronic components.85 The architec-
ture we present is not limited to the integration of systems with
strong single photon nonlinearities and we anticipate our
approach will serve as a natural intermediate step10 towards
large-scale photonic quantum technologies. In this intermediate
regime, the QONN may learn practical quantum operations with
weak or noisy nonlinearities, which are otherwise unsuitable for
fault-tolerant quantum computing.86 The effect of such noise is an
important subject for future work.
Future work will likely focus on loss correction techniques,

which are also possible in an all-optical context.87 Additionally,
classical neural networks have benefitted greatly from improved

training techniques. For example, in transfer learning, a trained
network has its final layer or two removed and new layers added,
which are then trained for an entirely new application.88 Future
work will explore whether similar techniques may be used to more
efficiently solve new problems in the QONN architecture, and
whether different architectures such as generative adversarial
networks can be applied to quantum optics.89 Together, our
results point towards both a powerful simulation tool for the
design of next-generation quantum optical systems and a versatile
experimental platform for near-term optical quantum information
processing and machine learning.

METHODS
Computational techniques
The quantum optics simulations in this work were performed with custom,
optimized code written in Python, with performance-sensitive sections
translated to Cython. The Numba library was used to GPU accelerate some
large operations. The most computationally intensive step was the

calculation of the multi-photon unitary transform (Uð~θiÞ in Eq. 1) from

the single photon unitary. The multi-photon unitary has
nþm� 1

n

� �2

entries, each of which requires calculating the permanent of an n × n
matrix.90

As with classical neural networks, different optimization algorithms
perform better for different tasks. We rely on gradient-free optimization
techniques that optimize an objective function without an explicitly
defined derivative (or one based on finite difference methods), as
computing and backpropagating the gradient through the system likely
requires knowledge of the internal quantum state of the system,
preventing efficient in situ training. While this might be acceptable for
designing small systems in simulation (say, designing quantum gates), it
does not allow for systems to be variationally trained in situ. We empirically
determined that the BOBYQA algorithm91 performs well for most
applications in terms of speed and accuracy for our QONN, and is
available in the NLopt library.92 We note that calculation of such a
gradient is possible with classical optical neural networks.93 For
the quantum reinforcement learning simulations, we used our
own implementation of evolutionary strategies.80 At each stage
evolution strategies takes a vector parameterizing the network,
generates a population of new vectors by repeatedly perturbing
the vector with gaussian noise, and then calculates a fitness for
each perturbed vector. The new vector is then the fitness-
weighted average of all the perturbed vectors. Evolution strategies
does not require backpropagation, in comparison to strategies
based on Markov decision processes, making it more suitable for
quantum applications.

Hardware and libraries
The computer used to perform these simulations is a custom-built
workstation with a 12-core Intel Core i7-5820K and 64 GB of RAM. The GPU
used was an Nvidia Tesla K40. Relevant software versions are: Ubuntu 16.04
LTS, Linux 4.13.0-39-generic #44 16.04.1-Ubuntu SMP, Python 2.7.12,
NumPy 1.14.1, NLopt 2.4.2, Cython 0.27.3, and Numba 0.40.0.

Benchmarking training
The training set for the Bell-state projector is the full set of Bell states
fψi

ing ¼ fjΦþi; jΦ�i; jΨþi; jΨ�ig encoded as dual-rail qubits. Our goal is to
map these to a set of states distinguishable by single photon detectors, thus
we opt for a binary encoding fjψi

outig ¼ fj1010i; j1001i; j0110i; j0101ig. A
system designed to perform this map can then be run in reverse to generate
Bell states from input Fock states. The CNOT gate uses a full input–output
basis set with fjψi

inig ¼ fj1010i; j1001i; j0110i; j0101ig and
fjψi

outig ¼ fj1010i; j1001i; j0101i; j0110ig. For the GHZ generator we
select just a single input–output configuration fjψi

inig ¼ fj101010ig and
fjψi

outig ¼ fðj101010i þ j010101iÞ= ffiffiffi
2

p g.

Fig. 6 Learning one-way quantum repeaters. a One-way quantum
repeaters (shown in blue) are used to correct photon loss on
logically encoded qubits |ψ〉L sent through a lossy channel with
transmissivity η. The quantum optical neural network (QONN) (inset)
can be trained to implement such repeater with the addition of
ancillary photons and modes. b Numerical simulation results of a
(m, n)= (4, 2) code, which corrects single photon loss. The output
fidelity for a given number of layers is plotted, reaching numerical
accuracy at 50 layers
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Simulated Hamiltonians
The Ising model we simulate is described by the Hamiltonian

Hising ¼ B
X
i

X̂i þ J
X
hi;ji

Ẑi � Ẑj ; (11)

where B represents the interaction of each spin with a magnetic field in the
x direction, and J is the interaction strength between spins in an
orthogonal direction. The Bose–Hubbard model we simulate is described
by the Hamiltonian

ĤBH ¼ ω
X
i

b̂yi b̂i � thop
X
hi;ji

b̂yi b̂j þ U=2
X
i

n̂ðn̂i � 1Þ; (12)

where b̂yi ðb̂iÞ represents the creation (annihilation) operator in mode i, n̂i
the number operator and ω, thop, and U the on-site potential, the hopping
amplitude, and the on-site interaction strength, respectively.

DATA AVAILABILITY
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is available at https://github.com/steinbrecher/bosonic.
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